

Applied Research Center

solution driven

Asynchronous Pulsing System

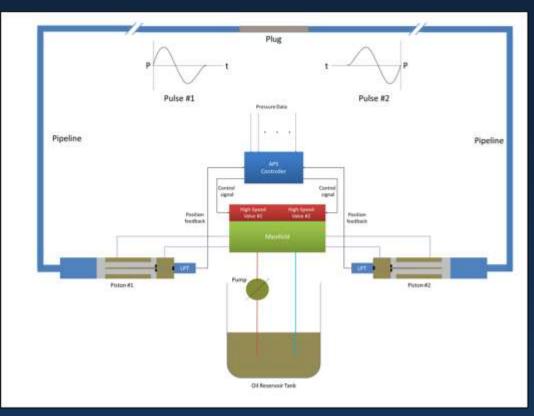
Anthony Fernandez DOE Fellow (Undergraduate Student, Mechanical Engineering)

FLORIDA INTERNATIONAL UNIVERSITY

Background

Background:

- Approximately 56 million gallons of HLW is currently being stored at Hanford. The transfer of waste to DSTs or the WTP create potential for plugging which can delay project milestones and be hazardous and expensive to repair.
- Industry call (~ 2002) a number of pipeline unplugging technologies were evaluated. Two technologies were identified as having potential and brought back for further testing and evaluation in 2008/2009.
- FIU began developing our own technologies based on lessons learned – 1) Peristaltic Crawler, 2) Asynchronous Pulsing System

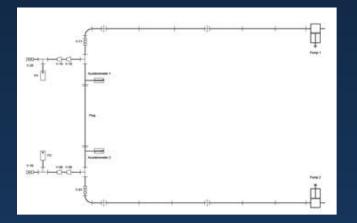


<u>Principle</u>: pressure pulses created asynchronously from both sides of the plug to capitalize on dynamic loads

Previous Research:

- Designed and procured system
- Set up bench scale test 3 in diameter pipeline with 300 psi limit, determined system operational parameters and validated operational principles
- Conducted additional studies on effects of entrained air – how to mitigate

Initial bench scale set up



Previous Testing:

Evaluate the asynchronous pulsing system on an engineering scale

<u>Testbed</u>

135 ft. of 3" threaded steel pipes on each side of plug (0.25% slope) instrumented with pressure transducers, accelerometers and thermocouples

Plug Manufacturing:

- Two plugs were created in each batch 1 for Blowout Testing 1 for Unplugging Testing ۲
- Manufacturing Process: ۲

Kaolin-Plaster plugs mimic ٠ the physical behavior of HLW plugs

Material	Amount (in kg)	Process	Time (in min.)
Water	6	6 Pouring	
Kaolin	5.14	Pouring and mixing	2
Plaster of Paris	6	Pouring	2
		Mixing	3

Plugs are wet cured for a 24 hour period before being transferred to their • respected test

Plug Blowout Testing:

- Plug Blowout testing was performed after 24 hours of curing to determine the quality of each batch
 - Pressure was steadily increased until the failure point
 - Only plugs that would hold a pressure of 400psi+ were considered ready to be placed on the pipeline
 - Unplugging testing was then performed on plugs that were proven to hold 400psi+

Previous Results

- Conducted parametric testing static pressure, pulse amplitude, pulse frequency, % air
- From parametric testing use optimal system parameters to unplug 3ft kaolin /plaster of Paris plugs

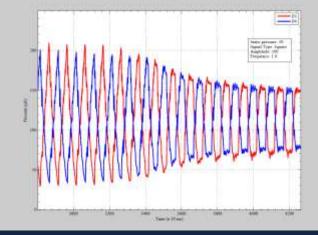
Pulse Wave Type	Pulse Frequency (Hz)	Unplugged (Y/N)	Average Pressure Amplitude (PSI)	Cycling Time (sec)	
Triangle	1.0	Yes	192.5	1973	
Triangle	2.0	Yes	96.5	1403	
Triangle	3.0	Yes	92.5	5273	
Square	1.0	Yes	162.5	2708	
Square	2.0	Yes	123.5	2172	
Square	3.0	Yes	97	3297	
Sine	1.0	Yes	180.5	1816	
Sine	2.0	Yes	106	2557	
Sine	3.0	Yes	82.5	2721	

Unplugging Trials

Previous Results

Previous Results:

Unplugging of 3-ft kaolin-plaster plugs



Plug prior to testing

Successful unplugging trial – complete breach

Pressure response to dislodged plug

Dislodged plug

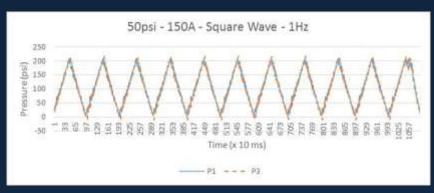
Current Testing

Air Entrainment Plug Testing

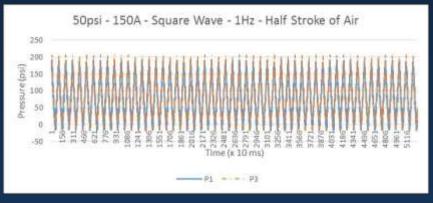
Air Quantity	Trail	Unplugged (Y/N)	Time Elapsed (Hrs)	Amplitude (A)	Frequency (Hz)	Wave Type
No Air	1	Y	4	100/150	1,2,3	Square
	2	Y	3	150	1	Square
	3	Y	6	150	1	Square
Half-Stroke	1	Y	4.5	150	1	Sine
	2	Y	8	150	1	Square
	3	Y	5.5	150	1	Square
Full-Stroke	1	Y	9.5	150	1	Square
	2	Y	10	150	1	Square

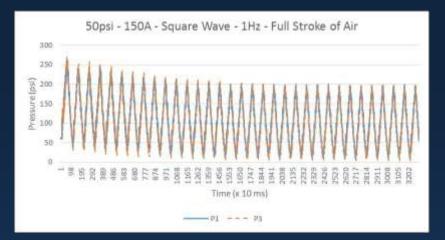
*All tests were performed at a baseline static pressure of 50 psi.

FLORIDA INTERNATIONAL UNIVERSITY



Current Data


Air Entrainment Plug Testing – P1 \rightarrow P3

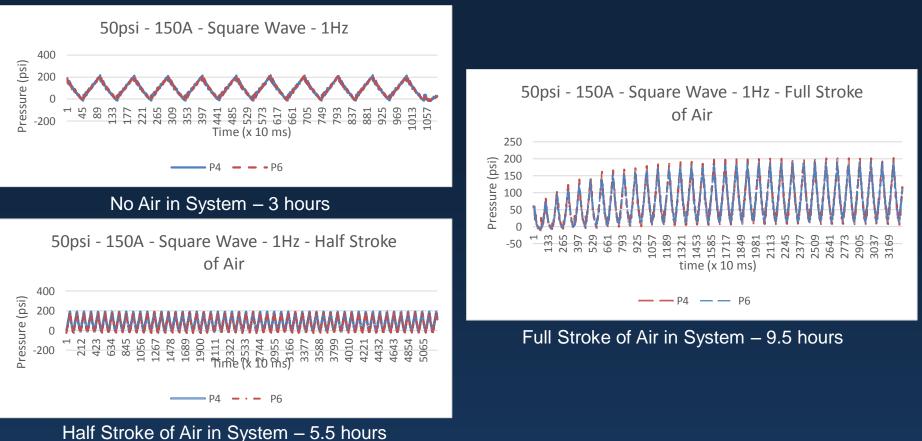

Sample Data:

No Air in System – 3 hours

Half Stroke of Air in System – 5.5 hours

Full Stroke of Air in System – 9.5 hours

FLORIDA INTERNATIONAL UNIVERSITY



Current Data

Air Entrainment Plug Testing – P6 \rightarrow P4

Applied Research Center

FLORIDA INTERNATIONAL UNIVERSITY

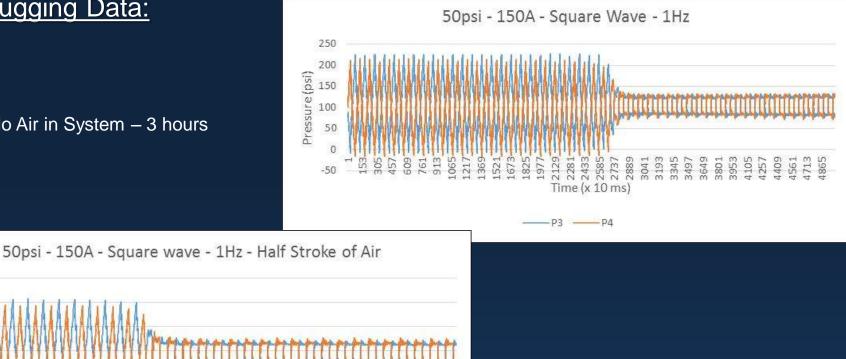
250 200

150 100

> 50 0

PRessure (psi)

Current Data


Air Entrainment Plug Testing – P3 \rightarrow P4

Unplugging Data:

No Air in System – 3 hours

565 753

471 377

Half Stroke of Air in System – 5.5 hours

Applied Research Center

Advancing the research and academic mission of Florida International University.

Time (x 10 ms)

P3 ---- P4

Path Forward

- Complete Data Analysis for all tests
- Complete reports milestone documents
- Investigate opportunities for onsite testing

Acknowledgements

- Mentors
 - Amer Awwad, Jairo Crespo, Dwayne McDaniel
- DOE-FIU Science and Technology Workforce Development Program
 - Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM0000598.