

Unmanned Aerial Vehicle (UAV) Surveying for DOE Legacy Management Sites and Climate Change and Resilience

Eduardo Rojas (DOE Fellow)

DOE-FIU Science and Technology Workforce Development Program

Applied Research Center

Florida International University

FLORIDA INTERNATIONAL UNIVERSITY

Project Description

Objective

Evaluate suitable remote sensing imagery techniques, to evaluate the different environmental characteristics present in current LM sites

Relevance to the LM Strategic Plan

Goal 4: Sustainably manage and optimize the use of land and assets and address severe weather events

This task will

- Research site-specific commercially available technologies with the potential for addressing issues related to climate change and resilience
- Compile a matrix containing the appropriate remote sensing technology adequate to surveying each LM site

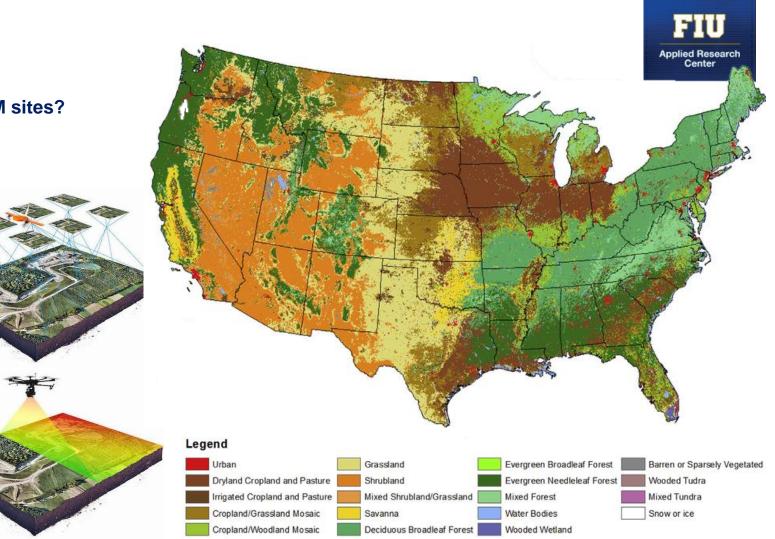
Considering across the country

- Land features, use, cover and conditions
- Elevation
- Hydrology
- Weather conditions

What are the long-term effects of climate change at LM sites?

- Land management, development, cover and erosion
- Vegetation
- Surface hydrology
- Wildlife migration patterns
- Severe weather events

How address climate change effects over time?

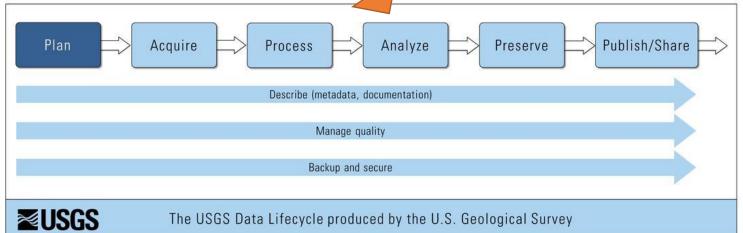

- Public and commercially available remove sensing imagery database
- On demand UAV in-house site survey

Onsite surveys

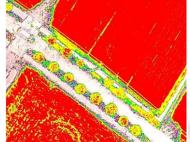
- Orthomosaic maps
- 3D point cloud (Photogrammetry & LiDAR)
- Stockpile volumetric measurements
- Slope monitoring
- Digital surface and terrain models

Automated geospatial data analytics

Machine Learning & Artificial Intelligence (AI)

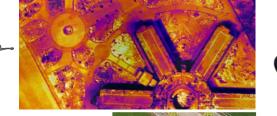

U.S Geological Survey Land Cover Institute

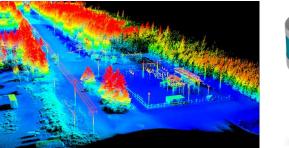
https://archive.usgs.gov/archive/sites/landcover.usgs.gov/landcoverdata.html



Onsite UAV surveys?

- Centimeter-level precision
- Cost effective
- Meaningful data at your disposal
- Broad custom-built sensory
- See beneath the surface
- Automated data collection Machine Learning and AI detecting historical change
- Data-driven decision-making





Advancing the research and academic mission of Florida International University.

Preliminary Results

Characterized LM Sites

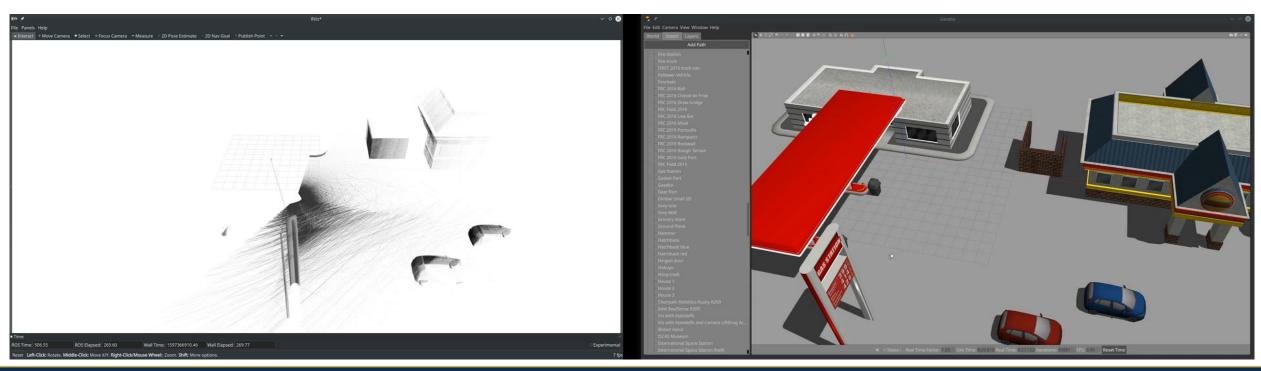
Introductory training

- Modern Photogrammetry and Optimal Flight Plans
- UAV designing and flight
- LiDAR mapping



Preliminary Results

UAV Mapping Simulation


- ROS Gazebo
- Optimal sensory configuration
- Mission planning parameters

DJI Phantom 3

DJI S1000

Summary and Future Work

On demand UAV in-house site survey, Machine Learning and AI have demonstrated enormous potential in autonomously surveying LM sites and addressing issues related to climate change and resilience

Geo Spatial Data Lifecycle

- Record management
- Data format standards, interchangeability and management cost
- Machine learning and Artificial intelligence analyze tools

UAV LiDAR Integration

In-house surveys

Acknowledgements

FIU ARC Mentors

Mr. Anthony Abrahao

DOE-FIU Science and Technology Workforce Development Program

Dr. Leonel Lagos Dr. Ravi Gudavalli

Sponsored by the U.S. Department of Energy, Office of Legacy Management, under Cooperative Agreement #DE-EM0000598.