

Uranium Fate and Mineral Transformations upon Remediation with Ammonia Gas

Silvina Di Pietro (DOE Fellow)

DOE-FIU Science and Technology Workforce Development Program Applied Research Center Florida International University

FLORIDA INTERNATIONAL UNIVERSITY

Background Hanford Site U Contamination

FIU Applied Research Center

Uranium Fate at Hanford:

- > 200,000 kg of U have been released (Zachara *et al.*, 2007)
- Oxidizing conditions → play a big role!
 - High mobility due to the presence of Ucarbonate complexes
 - U(VI) → most soluble and stable uranyl ion (UO_2^{2+})
 - U(IV) → most insoluble and least mobile

Why NH₃ Gas Injection for Remediation? Alkaline pH induced mineral dissolution and as NH₃ dissipates, U co-precipitates with low solubility minerals

Specific Objective: Understand physicochemical mineral phase alterations

Objectives

Main Objective:

To understand the mechanisms leading to immobilization of uranium during and after NH₃ gas injection Applied Research Center

Specific Objective: Identify U solid phases and determine their long-term stability

Experimental Methodology The Process

Phyllosilicate minerals in experiments:

- Present at the Site
- Significant mineral dissolution under the basic conditions
- Feldspar weathering:
 muscovite → montmorillonite → illite

Solutions in experiment:

7.2 mM Synthetic Groundwater (SGW): solution containing ions (i.e., Na⁺, Ca^{2+,} HCO₃⁻, etc.) replicating Hanford Site's porewater

FLORIDA INTERNATIONAL UNIVERSITY

Experimental Methodology Analytical Instrumentation

Instrumentation to identify alterations in mineral phases, both surface and bulk fractions

Fourier-Transform Infrared Spectroscopy (FTIR) → surface analysis of molecular absorbance

Branauer-Emmett-Teller (BET) → surface area

X-ray Diffraction (XRD) \rightarrow bulk analysis

Scanning Electron Microscope with Energy Dispersive Spectroscopy (SEM-EDS) \rightarrow elemental composition

FLORIDA INTERNATIONAL UNIVERSITY

Solid Phase Characterization XRD of Illite

- Goal: identify mineral alterations pre and post treatment NH₃ gas
- Overall: not a significant change among peaks

Illite: $K_{0.7}AI_2[AI_{0.7}Si_{3.4}O_{10}](OH)_2$

Applied Research

Center

Solid Phase Characterization FTIR of Illite

- Fourier-transform infrared spectroscopy (FTIR) = molecule absorbs radiation when the frequency is same as incident radiation
- Goal: understanding surface mineralogy differences in absorbance pre and post treatment NH₃ gas
- Overall trend: aerated>control>NH₃ treated

SEM image of Illite sample that underwent treatment and aeration

Advancing the research and academic mission of Florida International University.

Solid phase characterization **XANES of Illite**

Analysis:

- X-ray Absorption Near Edge Spectroscopy (XANES) = determine the oxidation state of a metal complex
- Goal: determine the oxidation ٠ state of the U in the solid phase
- Finding: small fraction ٠ (26±11%) remained reduced

Advancing the research and academic mission of Florida International University.

Conclusions

- 1. Mineral phase changes are difficult to identify in the 'bulk', (i.e. XRD does not show significant shifts)
- 2. Evidence of some changes via surface but more data will be gathered during internship (i.e. FTIR)
- 3. Reduced U in the solid phase (XANES analysis) following a 3-day treatment period Not expected!

Future Work

- On-going Experiments
 - Goal: Expose minerals (illite, muscovite and montmorillonite) to NH₃ gas and then characterize solids (both with and without aeration)
 - 1. Long term: minerals + U exposed to NH_3 gas for ~6 months
 - 2. Short term: minerals + U exposed to NH_3 gas for 3-7 days

Mineral*	μg U/gram of solid
Illite	1710
Muscovite	1710
Hanford Sediments	1660

- **PNNL internship #2**: June 4th-August 10th, 2018 with Dr. Szecsody
 - 1. Solid phase characterization of clean minerals exposed to NH₃ gas
 - 2. Solid phase characterization of solids exposed to U and NH_3 gas
 - 3. Incorporation of iodine into apatite minerals

Accomplishments 2017-2018

PhD Candidate as of April, 24th 2018!

Honors and Awards

- DOE-NE Innovations in Nuclear R&D Award based on 2017 Waste Management Proceedings Paper (\$1500, April 2018)
- 2nd Place Student Poster (Waste Management Conference, March 2017)

Peer-reviewed Publications

- Emerson, H. P., <u>Di Pietro, S.</u>, Katsenovich, Y., and Szecsody, J. (2018). "Uranium Immobilization in the Presence of Minerals Following Remediation via Base Treatment with Ammonia Gas" *Journal of Environmental Management*. Under review.
- <u>Di Pietro, S.</u>, Emerson, H.P., Katsenovich, Y., and Szecsody, J. (2018) "Mineral Dissolution following basic treatments." *Environmental Science and Technology*. In Preparation.

Non Peer-reviewed Publications

- Emerson, H.P., <u>Di Pietro, S.</u>, Katsenovich, Y., and Szecsody, J. (2018) "Base treatment for uranium immobilization at DOE's Hanford site" *Waste Management Symposia Proceedings.*
- <u>Di Pietro, S.</u>, Emerson, H.P., Katsenovich, Y. (2017) "Ammonia Gas Treatment for Uranium Immobilization at US DOE Hanford Site" *Waste Management Symposia Proceedings.*

Conference Presentations

- <u>Di Pietro, S.</u>, Emerson, H.P., Katsenovich, Y., "Potential Impacts to Local Mineralogy from Remediation with Ammonia Gas." *American Chemical Society, August 19-24, 2018, Boston, MA*
- <u>Di Pietro, S.</u>, Emerson, H.P., Katsenovich, Y., "Effects of Alkaline Treatment on Mineral Dissolution for Hanford Sediments." Waste Management Conference, March 18-22, 2018, Phoenix, AZ
- <u>Di Pietro, S.</u>, Emerson, H.P., Katsenovich, Y., "Effects of Alkaline Treatment on Mineral Dissolution for Hanford Sediments" DOE Fellows Poster Competition - Applied Research Center, Florida International University November 7th, 2017, Miami, FL

Acknowledgements

FIU ARC Mentors

- Dr. Hilary P. Emerson
- Dr. Yelena Katsenovich
- Dr. Leonel Lagos
- DOE-FIU Science and Technology Workforce Development Program
- Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM0000598