

Development of a Mechanical **Based System for Dry Retrieval of** Single-Shell Tank Waste at Hanford Presented: May 1, 2013 to the U.S. Department of Energy by Ximena Prugue DOE Fellow, Research Assistant

Worlds Ahead

Background

- DOE Fellow: Ximena Prugue
- **Degree:** Bachelors of Science
- Major: Mechanical Engineering
- Research Interests:
 - Robotics and Energy Systems
 - Renewable Energy

Introduction

- Current retrieval methods for sludge and saltcake require significant amounts of water for retrieval (> 55,000 gal)
- Using large amounts of water makes it increasingly difficult to allocate space in the receiving double-shell tanks
- Several methods have also reached their "limits of technology" before reaching the residual waste volume goal of 30 ft³ for 200 series tanks and 360 ft³ for 100 series tanks

Problematic Tanks

- Need to address retrieval technologies for problematic tanks
- For 67 leaking SSTs, little or no water can be added to dislodge or mobilize waste without exacerbating the leak
- Several tanks contain air-lift circulators where an arm-based retrieval would not be possible
- There are sixteen 200-series tanks with a 20-ft diameter where an arm-based system could not be deployed
- Utilize existing risers to reduce risk of contamination
- No dry retrieval methods currently available

Figure 1: Air-Lift Circulators in AX tanks at Hanford

History of SST Retrieval

Tank	Primary Waste Type	Retrieval Technology(ies) Deployed	Nominal Volume of Residual Waste (ft ³)
C-103	Sludge	Modified Sluicing	338
C-104	Sludge	Modified Sluicing, HWD	630
C-106	Sludge	Past Practice Sluicing, AD	370
C-108	Sludge	Modified Sluicing	1029
C-109	Sludge	Modified Sluicing	1150
C-110	Sludge	Modified Sluicing	2299
S-102	Saltcake	Modified Sluicing	4171
S-112	Saltcake	Modified Sluicing, RWL, CA	319
C-201	Sludge	Vacuum Retrieval	19
C-202	Sludge	Vacuum Retrieval	20
C-203	Sludge	Vacuum Retrieval	19
C-204	Sludge	Vacuum Retrieval	18

Scope of Work

- Evaluate existing methods for dry retrieval of solid waste from SSTs and report potential process improvements
 - Using the least amount of water
 - Retrieve the most amount of waste
 - In the most efficient manner
- ► Complete SST retrieval by 2040
- ▶ Optimize DST space
- Reduce environmental risk, especially for assumed leaking tanks

Screw Conveyor

- Ideally suited to handle a wide variety of materials and variable flow rate better than a pneumatic based system
- Lengths of over 50 m(~164 ft) are possible using only a single drive
- Entirely enclosed allowing fully contained waste transfer without any emissions or spillages
- Can be operated remotely
- Versatile and easily maintained with few moving parts

Design Parameters

Screw Capacity Factors:

- Particle Size
- Bulk Density
- Particle Shape

Screw Design Factors:

- Clearance between screw and shaft
- Free Length of the Intake

Methods to determine free-flowing properties of material:

- Hausner ratio = TD / AD
- Angle of repose

Empirical Methods - DEM

Particle Distribution

Particles are colored by diameter: smaller ones are light grey and larger ones are dark grey.

Particle Flow

Particles are colored by their speed: from light grey to dark grey for 0.4 to 0.9 m/s.

Discrete Element Method

Configuration

Other Methods in Consideration

PITHOG Robotic Crawler Dredge

SV60V and SV110V
pumps (SUPAVAC
Canada) can function as a
high lift vacuum and
transfer dry sand and
thick, aggressive sludges.

Outlook

- Determine most accurate moisture distribution data for Hanford waste to be able to simulate waste through vertical conveyor
- Simulate conveyor using empirical methods
- Lab-scale testing

Accomplishments

- Abstract accepted for 15th
 International Conference on Environmental Remediation and Radioactive Waste
 Management in Brussels,
 Belgium this September
- Panelist at 2013 Waste
 Management Conference
- Third Place poster for in-house poster competition

Applied Research Center FLORIDA INTERNATIONAL UNIVERSITY

Internship

- Location: Richland, WA
- Time:
 - Summer of 2012
- Research
 - Mobile Arm Retrieval System (MARS) for single shell tank retrieval

