

Field Research to Support Contaminant Transport Modeling of Tims Branch Watershed – Savannah River Site

DOE-FIU Science and Technology Workforce Development Program
Applied Research Center
Florida International University

FLORIDA INTERNATIONAL UNIVERSITY

Project Background

- Study Location: Tims Branch Watershed,
 Savannah River Site, Aiken, SC
- Heavy metal & radionuclide discharges into Tims
 Branch from SRS A/M Area
 - e.g., 43,500 kg of uranium released into A-014 outfall tributary into Tims Branch.
- Surface water hydrology modeling, particularly simulation of extreme rainfall events, crucial in understanding fate and transport of contaminants
- Good prediction and long-term monitoring tool
- Challenge finding observed/measured timeseries data
- Field data collected to fill data gaps and support model calibration and validation

Field Research: Water Sample Collection

- Collected water samples along A-014 OF tributary and main Tims Branch stream
 - (Sn, Na, Mg, Al, Ca, Mn, Fe, Ni, Cu, Zn, As, Se, Pb, U)

Sample collection at the A-014 outfall

Sample preparation at SREL

Field Research: Remote Monitoring Stations

Installed two remote monitoring stations:

- A-014 OF tributary
- Tims Branch

Units currently log water levels only

Flexible support for broad range of sensors:

 e.g., Leaf Wetness, Light Intensity, Rainfall, Rel. Humidity, Soil Moisture, Temp., Volatile Organic Comp

Water Level Data Collection

Collecting data since February 2018

- Luck: M-1 Air Stripper offline from March 6 23
 - Baseline data

Data collection for A-014 Unit - March 2018

RWM018 tested on April 16 for aquifer properties

M-1 Air Stripper Online vs. Offline

A-014 with M-1 online

Date	A-014 water height (ft)
3/26/2018 13:00	0.3008
3/26/2018 13:15	0.3179
3/26/2018 13:30	0.3304
3/26/2018 13:45	0.3387

A-014 with M-1 offline for a few hours

Date	A-014 water height (ft)
3/25/2018 0:00	0.0811
3/25/2018 0:15	0.0828
3/25/2018 0:30	0.0813
3/25/2018 0:45	0.0782

Model Development: A-014 Outfall Tributary

A-014 OF tributary

- Smaller and simpler
- 1. Developed shapefile for stream network
- 2. Developed MIKE 11 1-D stream network
- 3. Coupled with MIKE SHE OL flow model
- 4. Tested with data from 1993

Model Development: A-014 Stream Network

Stream Network Simplification in ArcGIS

Generating Stream Network in MIKE 11

Model Development: A-014 Model Coupling and Testing

A-014 OF tributary without engineering control structures

A-014 OF tributary with engineering control structures

Weir and culvert

Model Simulation Comparison: Control Structures vs. No Control Structures

Model Development: Tims Branch

- Simplified Tims Branch stream network using ArcGIS tools
 - Decreased the features from approximately 500 to 100

Model Development: Tims Branch Stream Network

Currently developing stream network and generating cross-sections in MIKE11

Stream network in MIKE11

Upstream section of TB with three "negative" chainages and one tributary with generated cross-sections

Future Work

- 1. Collect flow data and track storm events
- 2. Complete Tims Branch stream flow model
 - Build stream network in MIKE11
 - Couple with A-014 and MIKE SHE
 - Implement timeseries flow data being collected in model
 - Begin development of advection-dispersion model using MIKE
 ECO Lab for heavy metal and radionuclides transport

3. Model effects of:

- Constant flow vs. no flow
- Control structures vs. no control structures
- Storm events

Acknowledgements

- SRS Contacts
 - Dr. John Seaman (SREL)
 - Dr. Brian Looney (SRNL)
 - Branden Kramer (SRNS)
- FIU ARC
 - Dr. Noosha Mahmoudi
 - Ms. Angelique Lawrence
 - Modelling and Simulation Team
- Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM0000598.

Thank You

Questions?