
DOE-FIU Cooperative Agreement Annual Research Review – FIU Year 2

Project 2 – Task 1 Evaluation of Competing Attenuation Processes for Mobile Contaminants in Hanford Sediments

Mariah Doughman (DOE Fellow)

Overall Needs: Once active remediation is completed (pump and treat technology), a transition to more passive approaches, such as monitored natural attenuation (MNA), will be considered.

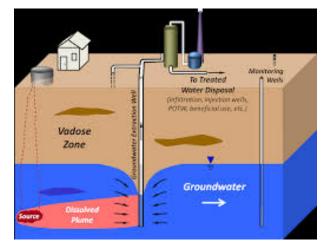


Fig. 2. Schematic diagram of waste discharges to the Hanford Site vadose

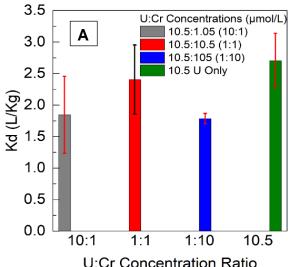
Objective: Evaluate the adsorption of contaminants of concern (Cr, U, I-127) onto Hanford Formation sediment at relevant aqueous concentrations in the absence and presence of each other to determine possible natural attenuation processes.

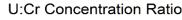
- Solid uranyl nitrate hexahydrate as source of U(VI)
- Potassium chromate as source of Cr(VI)
- 1:1 sediment/artificial groundwater ratio
- End-over-end tube revolver at 8 rpm
- 1-14 days to attain equilibrium conditions

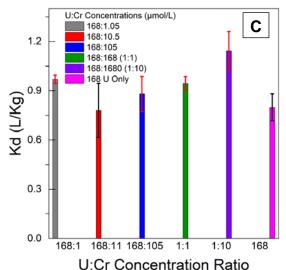
Cr (VI) concentration $(\frac{\mu mol}{L})$	U (VI) concentration $(\frac{\mu mol}{L})$
1.05 (54.6 $\frac{\mu g}{L}$)	10.5 (2500 $\frac{\mu g}{L}$)
10.5 (546 $\frac{\mu g}{L}$)	10.5 (2500 $\frac{\mu g}{L}$)
105 (5460 $\frac{\mu g}{L}$)	10.5 (2500 $\frac{\mu g}{L}$)
1.05 (54.6 $\frac{\mu g}{L}$)	168 (40000 $\frac{\bar{\mu}g}{L}$)
10.5 (546 $\frac{\mu g}{L}$)	168 (40000 $\frac{\mu g}{L}$)
105 (5460 $\frac{\mu g}{L}$)	168 (40000 $\frac{\mu g}{L}$)
168 (8736 $\frac{\mu \tilde{g}}{L}$)	168 (40000 $\frac{\mu g}{L}$)
1680 (87360 $\frac{\mu g}{L}$)	168 (40000 $\frac{\mu g}{L}$)

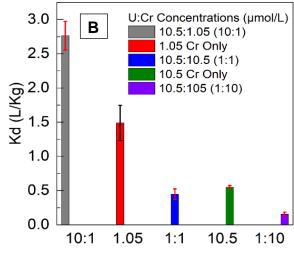
FIU Year 2 Highlights:

Dominant U(VI) species:

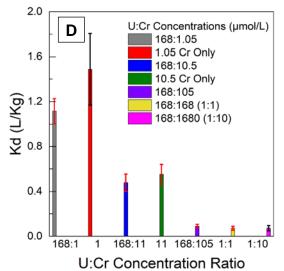

 $Ca_2UO_2(CO_3)_3^0$ (aq) and $CaUO_2(CO_3)_3^{2-1}$


Dominant Cr(VI) species:


CaCrO₄(aq)


$$K_d = \frac{[contaminant_{sediment}]}{[contaminant_{solution}]}$$

A&C: Change in U(VI) Kd B&D: Change in Cr(VI) Kd



FIU Year 2 Highlights:

Other Accomplishments:

- RemPlex Global Summit PNNL 2021: "Impact of Major Groundwater Components on the Adsorption of Hexavalent Uranium (VI) to Hanford Formation" (oral presentation)
- Roy G. Post scholarship recipient
- Waste Management Symposia 2022: "Impact of Major Groundwater Components on the Adsorption of Hexavalent Uranium (VI) to Hanford Formation" (poster presentation)
- Summer Internship at Pacific Northwest National Laboratory with Drs. Nik Qafoku, Jim Szecsody, and Hilary Emerson

Future work

- Conduct column studies: U, Cr, and competitive U and Cr
- Develop competitive batch studies including U, Cr, and I-127
- Characterize post treated sediment [x-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy analysis (SEM-EDS)]

Acknowledgments

- DOE-FIU Science and Technology Workforce Development Program
- Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM00005213.
- Pacific Northwest National Laboratory: Drs. Nik Qafoku, Hilary Emerson, and Jim Szecsody
- Florida International University: Dr. Kevin O'Shea, Dr. Yelena Katsenovich, Dr. Ravi Gudavalli, Dr. Leonel Lagos, and my lab mates
- My committee members:
 - Dr. Kevin O'Shea
 - Dr. Yelena Katsenovich
 - Dr. Konstantin Bukhryakov
 - Dr. Justin Carmel
 - Dr. Joong Ho Moon
 - Dr. Berrin Tansel

