

DOE-FIU Cooperative Agreement Annual Research Review – FIU Year 2

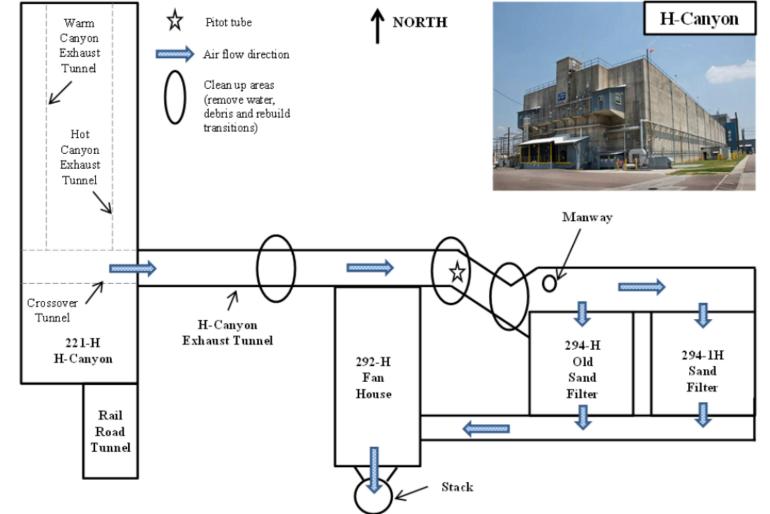
Project 1 – Task 20 Study of Carboline Coating for the Protection of the HCAEX Tunnel's Concrete Walls at Savannah River Site

DOE Fellow – Nicholas T. Espinal Mentor – Dr. Mayren Echeverria Boan Project Manager – Dr. Dwayne McDaniel Principal Investigator – Dr. Leonel Lagos

> Worlds Ahead

Advancing the research and academic mission of Florida International University

Applied Research Center


Introduction

H-Canyon

 Only facility in America which continues to reprocess radioactive material

H-Canyon Exhaust Tunnel (HCAEX)

- Allows air from chemical processes to flow into decontaminating filter system before being released into the environment
- Constructed in 1953

Schematic of the top view of the H-canyon and the tunnel.

Applied Research Center

Background and Objective

H-Canyon Exhaust Tunnel remote inspection revealed severe degradation

Steel (arrows) and coarse aggregates exposed

Water accumulation

Concrete degradation products (e.g. nitrate salts)

Aggressive environment within tunnel includes:

- HNO₃ fumes
- Radioactive material
- Strong winds with debris (~30 mph)
- High temperatures
- High relative humidity

Application of Coatings is a potential solution which can:

- Mitigate current degradation
- Prevent further degradation
- Extend service life of the tunnel

Objective: Study the corrosion behavior of coating systems through accelerated aging tests.

Literature Review

Applied Research Center

Search and Identify Potential Coatings for Evaluation:

• Several companies were contacted and finally four were selected for the study.

• This presentation will focus on a Carboline coating system

Applied Research Center

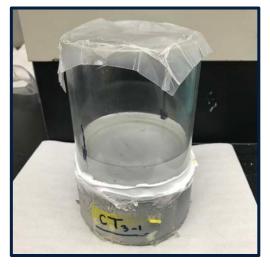
Materials & Methods

- Concrete samples with a mix design and composition similar to tunnel walls were prepared.
- Test plan developed to evaluate potential coatings.
- Three variables of interest.
- Samples exposed to accelerated aging conditions:
 0.5M HNO₃ solution and erosion
- Failures included: erosion, blistering, cracking, scaling.

Test Plan for coatings evaluation

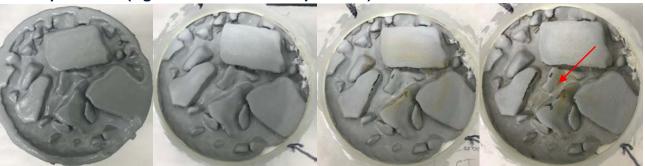
Test ID	Aged/Non- aged surface	Surface Preparation (Yes/No)	Steel rebar (Yes/No)
T1	Aged	Yes	Yes
T2	Aged	Yes	No
T3	Aged	No	Yes
T4	Aged	No	No
T5	Non-aged	No	Yes
T6	Non-aged	No	No
T7	Non-aged	yes	yes
T8	Non-aged	Yes	No

Measurements:


- Visual inspection / Failure Analysis
- Impedance
- Thickness
- pH

Positector-200 thickness Gauge

Potentiostat (left) and Faraday Cage (right) with test setup during impedance measurements


Test setup used for coating exposure to nitric acid solution

Results: Visual inspection / Failure Analysis

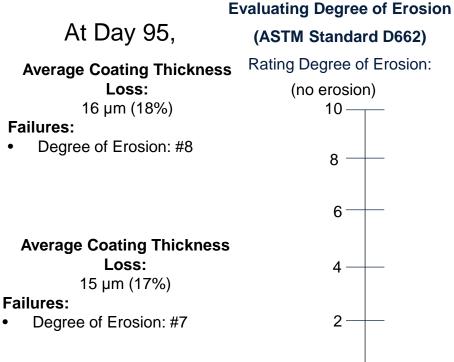
Applied Research Center

эU

Sample CT2-1 (Aged With Surface Preparation)

Sample CT4-1 (Aged Without Surface Preparation)

Sample CT7-1 (Non-aged with Surface Preparation)

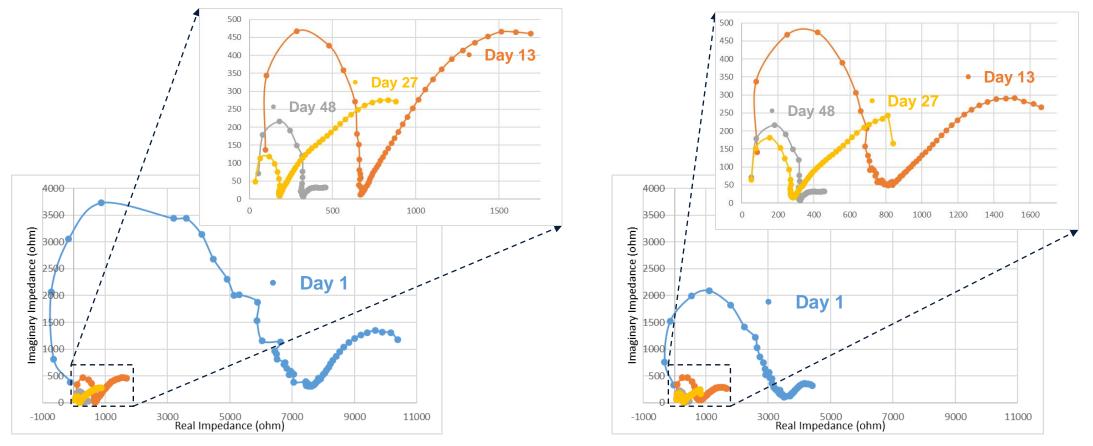

Before aging (Day 1)

(Day 33)

(Day 61)

٠

(no coating = total erosion)


Average Coating Thickness Loss: 17 µm (19%) Failures: Degree of Erosion: #9

Results: Impedance Measurements – Nyquist Plots

Applied Research Center

• Sample CT2-2 (With Surface Preparation)

- A STATE OF A STATE OF
- Taller, wider curves indicate less penetration of HNO₃ solution, better chemical resistance
- In both cases, a similar decrease of the impedance with time is observed, meaning the deterioration of the coating's protective properties

Acknowledgments

- DOE-FIU Science and Technology Workforce Development Program
- Mentor Dr. Mayren Echeverria–Boan
- Project Managers
 - Dr. Ravi Gudavalli
 - Dr. Dwayne McDaniel
- Principle Investigator & Project Director Dr. Leonel Lagos
- Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM00005213.

Thank You. Questions?