

Tuesday, September 27, 2022					
9:30 - 9:35 am EDT	Kick-Off /Welcoming Remarks (DOE-EM)	Kurt Gerdes (Director, Technology Development) – DOE EM-3.2			
9:35 - 9:40 am EDT	Welcoming Remarks (DOE-LM)	Leonel Lagos on behalf of DOE Office of Legacy Management			
9:40 - 10:00 am EDT	Projects 4 & 5: STEM Workforce Development and Training	FIU, DOE HQ (EM & LM), SRNL, PNNL, WIPP, SRS, ORP, LBNL, WRPS, INL, Grand Junction			
	BREAK				
11:00 - 12:00 pm EDT	Projects 4 & 5 (cont'd): STEM Workforce Development and Training	FIU, DOE HQ (EM & LM), SRNL, PNNL, WIPP, SRS, ORP, LBNL, WRPS, INL, Grand Junction			
	BREAK				
1:00 - 2:30 pm EDT	Project 1: Chemical Process Alternatives for Radioactive Waste	FIU, DOE HQ, PNNL, WRPS, SRNL, SRS			
2:30 - 4:00 pm EDT	Project 3: Waste and D&D Engineering & Technology Development	FIU, DOE HQ, SRNL, PNNL, LBNL, INL, ANL			
Wednesday, September 28, 2022					
10:00 - 11:30 am EDT	Project 2: Environmental Remediation Science & Technology	FIU, DOE HQ, SRNL, PNNL, ORNL, LANL, CBFO			
11:30 - 1:00 pm EDT	Wrap Up (FIU Projects 1, 2, 3, 4 & 5)	FIU, DOE HQ (EM & LM)			

Advancing the research and academic mission of Florida International University

DOE-FIU Cooperative Agreement Annual Research Review – FIU Year 2

PROJECT 3 Waste and D&D Engineering & Technology Development

Worlds Ahead

Advancing the research and academic mission of Florida International University

FIU Personnel and Collaborators

Project Manager: Leonel Lagos

Faculty/Researcher: Himanshu Upadhyay, Joseph Sinicrope, Walter Quintero, Clint Miller, Santosh Joshi, Tushar Bhardwaj, Suresh Peddoju, John Dickson, Mellissa Komninakis, Kexin Jiao, *Yolanda Rodriguez

DOE Fellows/Students: Roger Boza, David Mareno, Aurelien Meray, Adrian Muino Ayala, Christian Lopez, Christian Dau, Philip Moore, *Oscar Roa

DOE-EM: Jennifer McCloskey, Dinesh Gupta, Genia McKinley, Jean Pabon, Jonathan Kang, Douglas Tonkay,

SRNL: Jennifer Wohlwend, Justin Kidd, Emily Fabricatore, *Connor Nicholson, *Tristan Simoes-Ponce, Carol Eddy-Dilek

ORNL: Alexander Johs

PNNL: Vicky Freedman, Rob Mackley

LBNL: Haruko Wainwright

Project Tasks and Scope

TASK 1: WASTE INFORMATION MANAGEMENT SYSTEM (WIMS) (HQ)

Subtask 1.1 WIMS System Administration - Database Management, Application Maintenance & Performance Tuning

- Subtask 1.2 Waste Stream Annual Data Integration
- Subtask 1.5 Cyber Security of WIMS Infrastructure

TASK 2: D&D SUPPORT TO DOE EM FOR TECHNOLOGY INNOVATION, DEVELOPMENT, EVALUATION AND DEPLOYMENT

 Subtask 2.1
 Development of Uniform Testing Protocols and Standard Specifications for Dust Suppressant Technologies in Support of Open-Air Demolition during D&D

 Subtask 2.2
 Applications of Intumescent Foams and Other Fire-Retardant Materials to Mitigate Contaminate Release during Nuclear Pipe Dismantling and other D&D Activities

 Subtask 2.3
 Certifying Fixative Technology Performance when Exposed to Impact Stressors as Postulated in Contingency Scenarios Highlighted in Safety Basis Documents

Subtask 2.4 Multi-functional 3D Polymer Framework for Mercury Abatement

TASK 3: D&D KNOWLEDGE MANAGEMENT INFORMATION TOOL (KM-IT) (HQ, SRNL, INL, ANL)

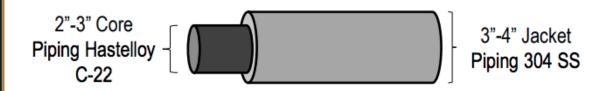
Sı	ubtask 3.4	Content Management
Sı	ubtask 3.5	Marketing and Outreach
Sı	ubtask 3.6	D&D KM-IT System Administration
Sı	ubtask 3.7	Cyber Security of D&D KM-IT Infrastructure

Project Tasks and Scope

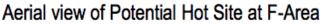
TASK 6: AI F	OR EM PROBLEM SET (D&D): STRUCTURAL HEALTH MONITORING OF D&D FACILITY TO			
IDENTIFY CRACKS AND STRUCTURAL DEFECTS FOR SURVEILLANCE AND MAINTENANCE (SRNL)				
Subtask 6.5	Design & Development of Machine Learning and Deep Learning Models to Identify and Locate Cracks in D&D Mockup Facility (NEW)			
Subtask 6.6	Design & Development of a Mobile Application to Deploy Machine Learning and Deep Learning Models on the iOS Devices at SRS (NEW)			
Subtask 6.7	Research and Prototype Deployment of a Web Service API framework for AI Deep Learning Model (NEW)			
TASK 7: AI FOR EM PROBLEM SET (SOIL & GROUNDWATER) - EXPLORATORY DATA ANALYSIS &				
MACHINE LEARNING MODEL FOR HEXAVALENT CHROMIUM [CR (VI)] CONC. IN 100-H AREA (PNNL)				
Subtask 7.2	Data Pre-Processing & Exploratory Data Analysis to Evaluate the Chromium Conc. in the Samples (NEW)			
Subtask 7.3	Groundwater and Surface Water Spatiotemporal Relationship Identification (NEW)			
TASK 8: AI FOR EM PROBLEM SET (SOIL AND GROUNDWATER) - DATA ANALYSIS AND VISUALIZATION				
OF SENSOR	DATA FROM WELLS AT THE SRS F-AREA USING MACHINE LEARNING (LBNL, SRNL)			
Subtask 8.4	Data Ingestion/Communication Module Development for the AI/ML System (NEW)			
Subtask 8.5	Development of the AI/ML-Based System to Perform Predictive Analytics using Datasets containing Time- Series and Imagery Data from Sensors (NEW)			

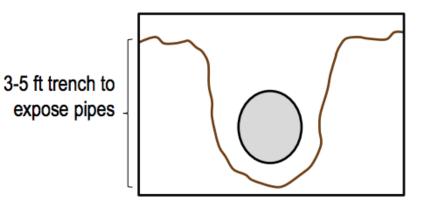
Task 2

D&D Support to DOE EM for Technology Innovation, Development, Evaluation and Deployment



Research Activity 1: Foam Fixative Plugs to Mitigate Contaminate Release during Nuclear Pipe Dismantling and other D&D Activities


What is the current need?


- By FY '27, the F/H Laboratory Deactivation Project Team plans to remove all the buried LAD and HAD piping in the Courtyard between 772-F and 772-1F.
- The driver for removal is to prevent future release(s) to the environment from the buried, highly-contaminated piping.
- Our intent is to remove the piping to within 1' of the respective buildings and then to cap both the 2 & 3-inch "core" pipe and the 3 & 4-inch "jacket" pipe.
- The piping is generally buried to a depth of 3-5 feet.
- Total length of piping to be removed is approximately 250 feet. Piping will be cut to 5' lengths so that it may be disposed to a B-25.

Buried LAD and HAD Piping between 772-F and 772-1F

Research Activity 1: Foam Fixative Plugs to Mitigate Contaminate Release during Nuclear Pipe Dismantling and other D&D Activities

Applied Research Center

Research Highlights & Accomplishments:

Evaluation of the adhesion and bonding properties of the Hilti CP-620 foam plug to Hastelloy C-22 piping

Evaluation of the adhesion and bonding properties of the Hilti CP-620 foam plug to Hastelloy C-22 piping under various moisture conditions

Determination of the heat profile of Hilti CP-620 foam during curing in Hastelloy C-22 piping

Establish the relationship between piping diameter and necessary quantity of Hilti CP-620 foam

Determine the internal pipe pressure after Hilti CP-620 foam deployment and curing time

Develop a leak test standard operating procedure to test for the effectiveness of the of Hilti CP-620 foam plug

Conduct a literature review to determine if using a hot tap is a viable method to deliver of Hilti CP-620 foam into piping

Gather information and reference material to initiate the construction of the mock-up test of the F/H labs courtyard.

- Phase I Test Plan developed and approved in January 2022 and near completion.
- Provided 5 updates to stakeholders throughout Year 2 (January July).
- Alternative technology identified that may be more compatible with hot tap procedures.

Research Activity 1: Foam Fixative Plugs to Mitigate Contaminate Release during Nuclear Pipe Dismantling and other D&D Activities

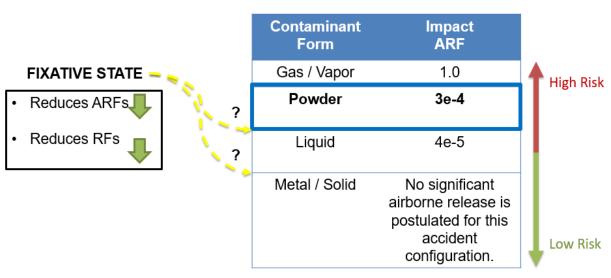
FIU Year 3 Way Ahead:

Alternative Fixative Foams (In the Event Hilti CP-620 is NOT Viable) - FOAMBAG™

- FOAMBAG is very similar to the DRAINBLOCK technology.
 - PU resin foam that expands to form a permanent seal.
- The FOAMBAG technique has been in use in the UK in gloveboxes at Sellafield and meets the UK gas industry technical standard T/SP/E/59.

- Complete execution of Phase I Test Plan (Assessment of Hilti CP-620 Foam)
- Develop Phase II Test Plan (same series of tests on FOAMBAG technology)
- Initiate planning for construction of F/H Lab Courtyard mock-up in preparation for site demo in FY'24 / FY '25

Center

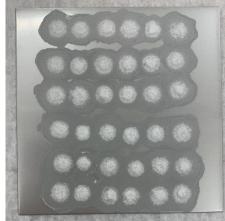

Research Activity 2: Certifying Fixative Technology Performance when Exposed to Impact Stressors Postulated in Contingency Scenarios Highlighted in Safety Basis Document

Site Needs:

- Outdated regulations, such as the DOE-HDBK-3010, outline factors for dealing with residual contamination, but fail to account for the positive impacts provided by fixative technologies in reducing ARF coefficients.
 - Results in inconsistent certification methodology for fixative technologies.
 - Produces varying Source Term calculations.
 - Fails to provide sufficient credit for improvements in state-of-the-art fixative technologies.
 - Key finding in the SRS 235F-PuFF research activity after fixative deployment, site personnel could not take credit for fixatives in the safety basis calculations.
 - Potential to reduce cost due to a more accurate/lower Source Term.

Objectives:

- Develop an experimental design for the quantification of contamination release during impact stress.
- Reevaluate ARF coefficients for powder contaminants under impact.
- Determine ARF coefficients for fixative materials under impact.
 - Fixative/Polymer State
- Integrate results to update DOE-HDBK-3010.



Objective 1 - Experimental Methodology

ASTM E3283 – Standard Practice for Preparation of Loose Radiological/Surrogate Contamination on Nonporous Test Coupon Surfaces

- Surrogate contaminant Cesium Chloride (CsCl)
 - Unique signature that is detectable in the analysis process.

ASTM D2794 – Standard Test Method for Resistance of Organic Coatings to the Effects of Rapid Deformation (Impact)


- BYK Gardner Impact Tester
 - Evaluates impact resistance and determines the exact point of failure and/or establish pass/fail specifications.
 - Maximum force of 320 in-lb (368 kg-cm).

Objective 1 - Experimental Methodology

- Airtight acrylic housing to contain released particulates.
- Air Sampler & Mixed cellulose ester (MCE) filters to capture airborne release.
 - Flow rate of 17L/min about 82 cycles for collecting airborne particulates.
- Sampling wipes to collect resettled release.
- ICP-MS is used to detect only the specific element in the surrogate and quantifies the amount detected.

Objective 1 - Experimental Methodology

• Determine Total Cs from ICP-MS:

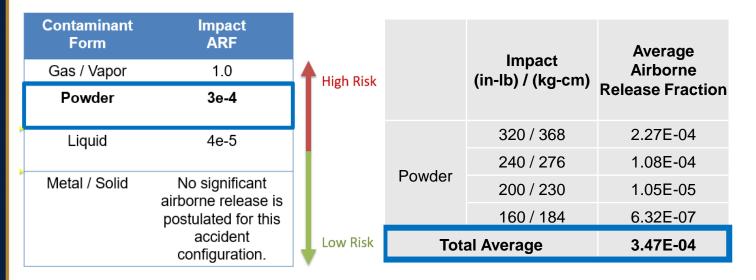
Mass of
$$Cs = (C_{ppb} \times 10^{-6}) \times \frac{m}{\rho} \times DF$$

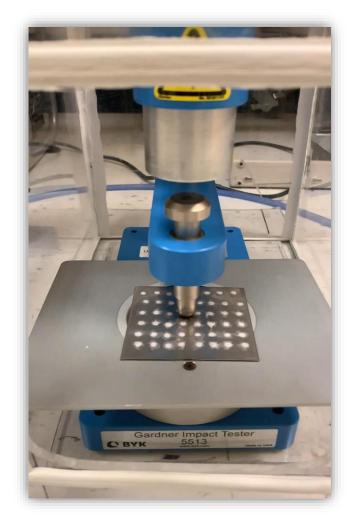
- Cppb is the concentration in parts per billion as determined by ICP-MS analysis (1 ppb = 10^{-6} mg/mL)
- m is the mass of the prepared solution matrix (CsCl + 2% HNO₃ solution)
- ρ is the density of that solution (for very dilute such as 2% HNO₃, this can be approximated to equal 1 kg/L)
- DF is the dilution factor if original solution was diluted for analysis
- Determine Airborne Release Fraction:

$$ARF = \frac{m_{ICP \; Filter}}{m_{released}}$$

- mICP-Filter is the mass of Cs from the air filter determined from the ICP-MS
- mreleased is the total mass of contamination released

Objective 1 - Experimental Methodology - VALIDATED


Applied Research

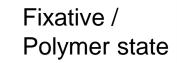

Center

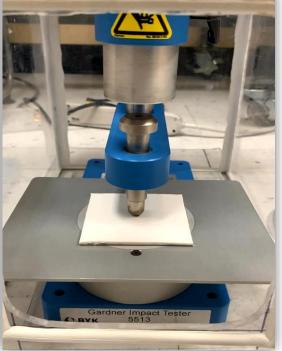
Objective 2 – Reevaluate Powder ARFs

- Current ARFs for powder form under impact, as defined by the DOE-HDBK-3010, is 3e-4.
- Powder contaminant only coupons were tested at various impact forces.
- Impact with no fixative shows a potential for a large release.
 - Higher ARFs
 - Coupon deformation
- Average ARF is 3.47E-04.

Powder state

Objective 2 - Revaluation of historical data for powder ARFs under impact - CONFIRMED





Objective 3 – Confirm Fixative/Polymer State

Key Findings:

- Applying fixative technologies significantly reduced ARFs under impact stressors.
 - Should be it's own designation
- Facilitates the comparison of various fixative technologies based on their ability to contain contamination release when exposed to impact stressors (e.g. FD vs. PBS).

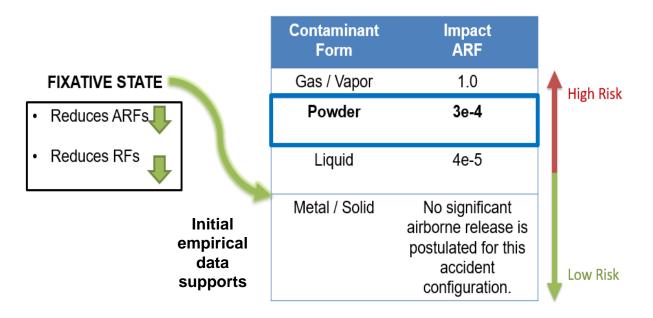
Average Airborne Release Fraction

6.00E-07

3.18E-07

4.59E-07

Contaminant Form	Impact ARF			_	Average		Gardner Impact Test	er	
Gas / Vapor	1.0	High Risk		Impact (in-lb) / (kg-cm)	Airborne	1			
Powder	3e-4		(III-ID) / (Kg-CIII) Release Fraction		Impact				
Liquid	4e-5			320 / 368	5.55E-07		(in-lb) / (kg-cm)		
				FD	240 / 276	6.78E-07			
Metal / Solid	Metal / Solid No significant airborne release is postulated for this		FD	200 / 230	8.34E-07	DDDC	320 / 368		
				160 / 184	3.33E-08	BPBS	160 / 184		
accident configuration.		Low Risk	Tota	al Average	5.25E-07	Total A	verage		


Objective 3 – Validation of Fixative/Polymer State – INITIALLY CONFIRMED

Applied Research Center Research Activity 2: Certifying Fixative Technology Performance when Exposed to Impact Stressors Postulated in Contingency Scenarios Highlighted in Safety Basis Document

FIU Year 2 Research Highlights & Accomplishments:

- Baseline results (powder contamination only) support ARF coefficients outlined in DOE-3010-HDBK.
- Initial results when applying fixative technologies support the addition of a "fixative / polymer state" in DOE-3010-HDBK due to <u>significant reductions</u> in the ARFs.
 - Initial data shows that fixatives have a lower ARF than liquid form.

Research Activity 2: Certifying Fixative Technology Performance when Exposed to Impact Stressors Postulated in Contingency Scenarios Highlighted in Safety Basis Document

FIU Year 3 Way Ahead:

Experimental Design

• Standardize process and equipment

Further Confirm ARFs under Impact

- Powder contamination
- Fixative / Polymer state

ASTM Testing Practice

Important for consideration as an ASTM standard

Methods for Direct Comparison of Fixative Technologies

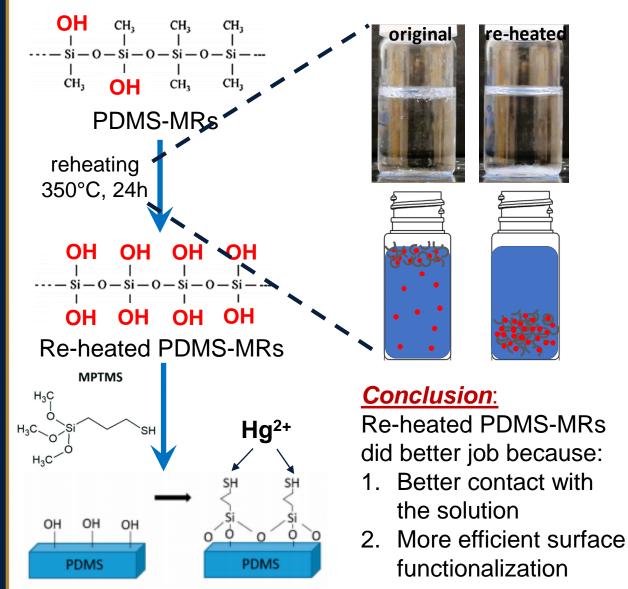
Applied Research Center

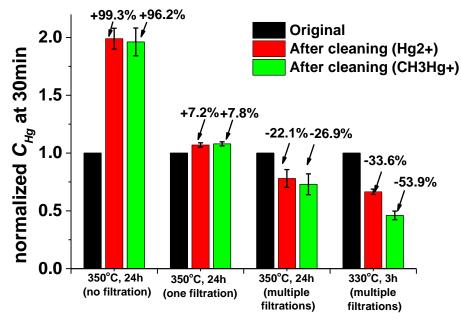
Research Activity 3: Polydimethylsiloxane Micro-ribbons for Mercury Remediation

Site Needs:

- Developing novel technologies that support Hg remediation in water
- Address the adsorbing of various forms of Hg contaminants
- Enable an easy, cost-effective method to recycle the used sorbent

Objectives:


- Design recyclable polydimethylsiloxane micro-ribbons (PDMS-MRs) to achieve Hg²⁺ and CH₃Hg⁺ abatement.
 - Confirm application of PDMS-MRs for Hg²⁺ remediation in water
 - Confirm application of of PDMS-MRs for CH₃Hg⁺ remediation in water
 - Synthesis of magnetic PDMS-MRs (mPDMS-MRs)
 - Confirm the recycling of mPDMS-MRs in water


Research Activity 3: Polydimethylsiloxane Micro-ribbons for Mercury Remediation

Applied Research Center

Hg²⁺ and CH₃Hg⁺ remediation using PDMS-MRs

10 mg of PDMS-MRs was added into:
a. 10 mL of 0.5 ppm Hg²⁺ solution
b. 10 mL of 0.5 ppm CH₃Hg⁺ solution

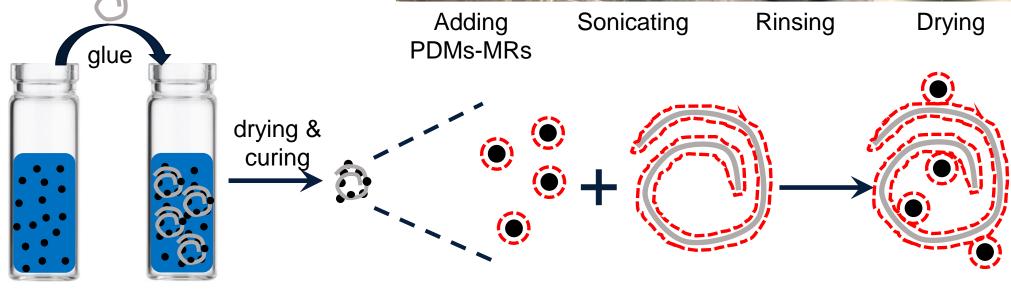
Conclusion:

After 30 min, ~ **33.6%** of Hg²⁺ and ~**53.9%** of CH₃Hg⁺ was removed using 10 mg/mL PDMS-MRs sorbent

FIU Applied Research Center

Research Activity 3: Polydimethylsiloxane Micro-ribbons for Mercury Remediation

Synthesis of recyclable mPDMS-MRs to facilitate removal


Magnetic driver: Iron Oxide (Fe₃O₄) powder (~ 5 μ m)

Sorbent base: PDMS-MRs

Glue: PDMS Part A (monomer)

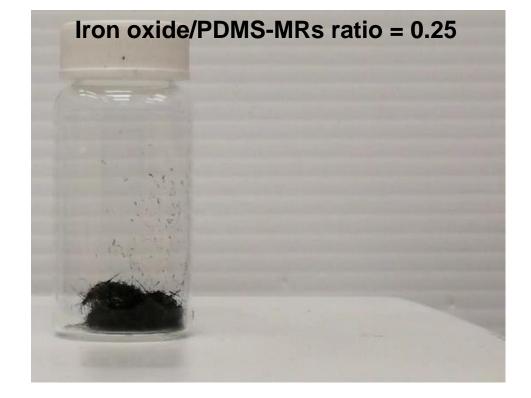
Synthesis medium: Acetone

Applied Research Center

Research Activity 3: Polydimethylsiloxane Micro-ribbons for Mercury Remediation

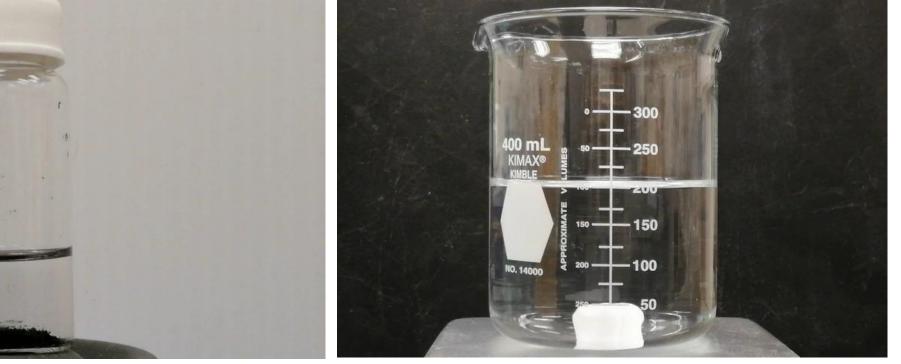
Optimization of mPDMS-MRs

	Sample A	Sample B	Sample C	Sample D
Iron oxide powder	0.1 g	0.1 g	0.1 g	0.1 g
PDMS monomer (glue)	0.025 g	0.05 g	0.075 g	0.1 g
Acetone for dispersing	3 mL	3 mL	3 mL	3 mL
PDMS-MRs	0.05 g	0.1 g	0.05 g	0.1 g
Acetone for rinsing	5 mL	5 mL	5 mL	5 mL
Glue concentration	8.3 g/L	16.6 g/L	24.9 g/L	33.2 g/L


	Sample A	Sample B	Sample C	Sample D
PDMS-MRs	100 mg	100 mg	100 mg	100 mg
Iron oxide powder	200 mg	100 mg	50 mg	25 mg
Weight ratio (Iron oxide/PDMS-MRs)	2	1	0.5	0.25

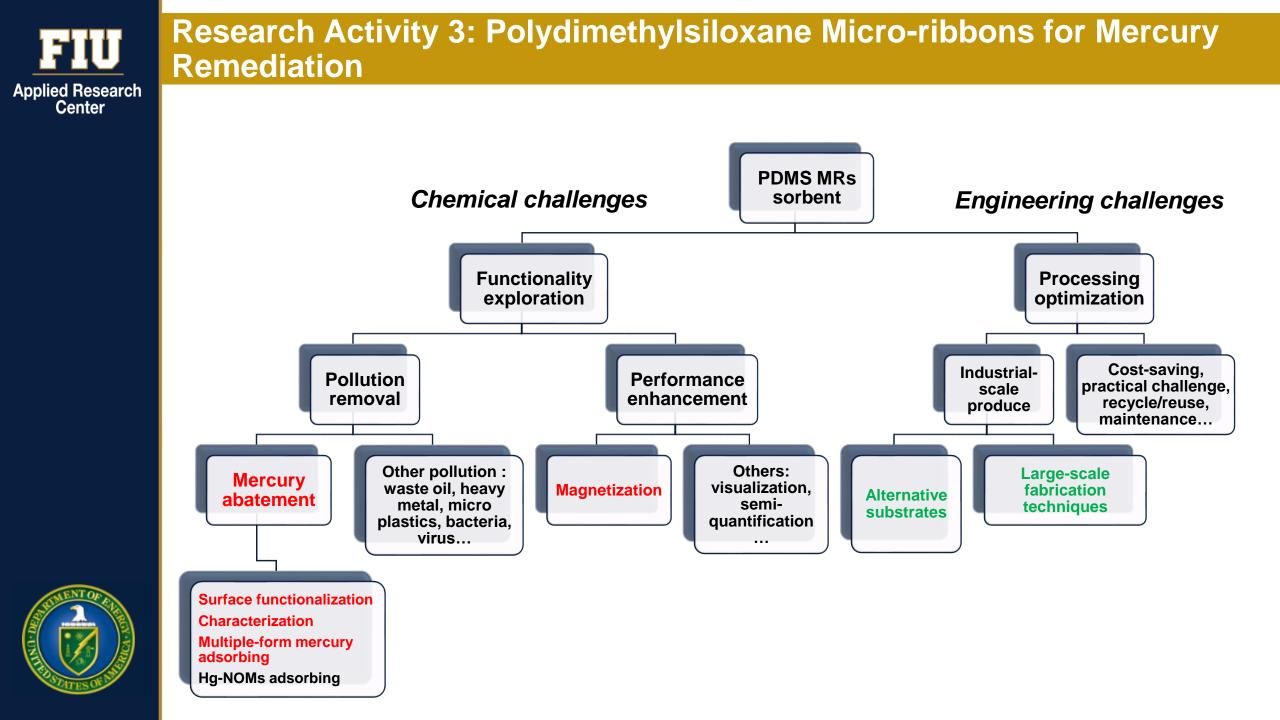
Research Activity 3: Polydimethylsiloxane Micro-ribbons for Mercury Remediation

Conclusion:


All the samples with Iron oxide powder/PDMS-MRs ratio between 2 and 0.25 showed strong magnetic field responsibilities. The order of the strength from high to low is: sample A (ratio = 2) > sample B (ratio = 1) > sample C (ratio = 0.5) > sample D (ratio = 0.25).

Research Activity 3: Polydimethylsiloxane Micro-ribbons for Mercury Remediation

Applied Research


Recycling m-PDMS-MRs from water

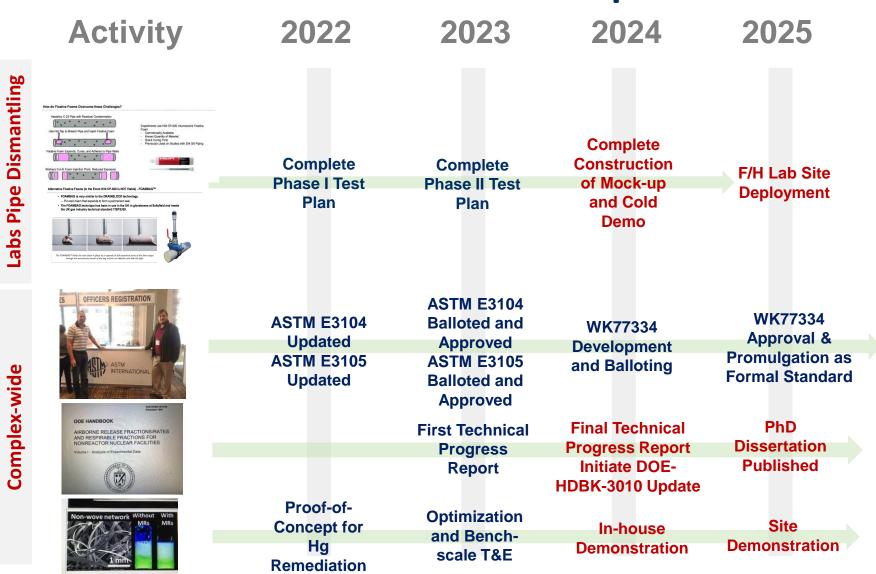
m-PDMS-MRs in Oil/Water separation

Conclusion:

- 1. The mPDMS-MRs are stable in water. The magnetic powders did not come off from the PDMS-MRs even after vigorous stirring.
- 2. The mPDMS-MRs maintain their ability of entanglement (physical property)
- 3. The mPDMS-MRs maintain their surface chemistry (chemical property)

H U

Applied Research


Center

Foam Fixatives ISO F/H

DOE EM

Technology Development and Deployment Road Map

D&D Roadmap

DOE-FIU Cooperative Agreement

Upcoming Events Announcement

FIU DOE Fellows Poster Exhibition

Applied Research Center

16thAnnual

DOE FELLOWS POSTER EXHIBITION

NOVEMBER 7, 2022 1 pm – 4 pm FIU ENGINEERING CENTER PANTHER PIT

A STEM WORKFORCE DEVELOPMENT PROGRAM SPONSORED BY THE U.S. DEPARTMENT OF ENERGY

fellows.fiu.edu

FIU DOE Fellows Induction Ceremony

Applied Research Center

Save the Date

DOE-FIU Science & Technology Workforce Development Program's

Research

6th DOE Fellows Induction Ceremony (Class of 2022)

Host: Applied Research Center, Florida International University

When: Tuesday, November 8, 2022 at 12:00 pm

Where: FIU Modesto Maidique Campus Graham Center (GC) Ballroom 11200 SW 8th St, Miami, FL 33174

A collaboration between the U.S. Department of Energy's Office of Environmental Managemen and Florida International University's Applied Research Center

Thank You. Questions?