

Wednesday, August 23, 2023							
9:00 - 9:05 am EDT	Kick-Off /Welcoming Remarks (DOE-EM)	Rod Rimando (Acting Director, Technology Development) – DOE EM-3.2					
9:05 - 9:10 am EDT	Welcoming Remarks (DOE-LM)	Ms. Jalena Dayvault (Site Manager) – DOE LM					
9:10 - 10:40 am EDT	Project 2: Environmental Remediation Science & Technology	FIU, DOE HQ, SRNL, PNNL, ORNL, LANL, LBNL, CBFO					
10:40 am - 12:10 pm EDT	Project 1: Chemical Process Alternatives for Radioactive Waste	FIU, DOE HQ, PNNL, WRPS, SRNL, SRS					
	LUNCH BREAK [12:10 – 1	1:30 pm]					
1:30 - 3:00 pm EDT	Project 3: Waste and D&D Engineering & Technology Development	FIU, DOE HQ, SRNL, PNNL, LBNL, INL, ANL					
	Thursday, August 24,	2023					
9:00 - 10:30 am EDT	Projects 4 & 5: STEM Workforce Development and Training	FIU, DOE HQ (EM & LM), SRNL, PNNL, WIPP, SRS, ORP, LBNL, WRPS, INL, Grand Junction					
BREAK [10:30 – 10:35 am]							
10:35 - 12:00 pm EDT	Wrap Up (FIU Projects 1, 2, 3, 4 & 5)	FIU, DOE HQ (EM & LM)					

Advancing the research and academic mission of Florida International University

DOE-FIU Cooperative Agreement Annual Research Review

PROJECT 3 Waste and D&D Engineering & Technology Development

Worlds Ahead

Advancing the research and academic mission of Florida International University

FIU Personnel and Collaborators

- Project Manager: Leonel Lagos
- Faculty/Researcher: Himanshu Upadhyay, Joseph Sinicrope, Walter Quintero, Clint Miller, Jayesh Soni, Santosh Joshi, Masudur Siddiquee, John Dickson, Mellissa Komninakis, Kexin Jiao*
- **DOE Fellows/Students:** Roger Boza, Aurelien Meray, Alejandro De-La-Noval, Aris Duani Rojas, Fabiola Rivera-Noriega, Bryan Torres, Nicholas Espinal
- **DOE-EM:** Nancy Bushman, Dinesh Gupta, Genia McKinley, Jean Pabon, Jonathan Kang, Douglas Tonkay, Jennifer McCloskey, Nick Machara, Rod Rimando, Daniel Scott Boyd
- SRNL: Nixon Peralta, Jeff Crenshaw, Hansell Gonzalez-Rayma, Thomas Danielson, Jennifer Wohlwend, Austin Coleman, Justin Kidd*, Connor Nicholson, Carol Eddy-Dilek
- SRS: Jack Musall
- PNNL: Rob Mackley, Xuehang Song
- LBNL: Haruko Wainwright

Project Tasks and Scope

TASK 1: WASTE INFORMATION MANAGEMENT SYSTEM (WIMS) (HQ)

Subtask 1.1	WIMS System Administration -	Database Management, Application Mainte	nance & Performance Tuning
		0 / 11	0

- Subtask 1.2 Waste Stream Annual Data Integration
- Subtask 1.5 Cyber Security of WIMS Infrastructure

TASK 2: D&D SUPPORT TO DOE EM FOR TECHNOLOGY INNOVATION, DEVELOPMENT, EVALUATION AND DEPLOYMENT

Subtask 2.1	Development of Uniform Testing Protocols and Standard Specifications for Fixative Technologies in Support of
	Complex-Wide D&D Activities
Subtask 2.2	Test and Evaluation of Down-Selected Intumescent Foams/Foam Plug Technologies to Mitigate Contaminate
	Release during Nuclear Pipe Dismantling in Support of a Hot Demo at F/H Labs in FY25
Subtask 2.3	Certifying Fixative Technology Performance when Exposed to Impact Stressors as Postulated in Contingency
	Scenarios Highlighted in Safety Basis Documents

Subtask 2.4 Multi-functional 3D Polymer Micro-Ribbons for Mercury Abatement

TASK 3: D&D KNOWLEDGE MANAGEMENT INFORMATION TOOL (KM-IT) (HQ, SRNL, INL, ANL)

Subtask 3.4	Content Management
Subtask 3.5	Marketing and Outreach
Subtask 3.6	D&D KM-IT System Administration
Subtask 3.7	Cyber Security of D&D KM-IT Infrastructure
Subtask 3.8	KM-IT Tech Talks

Project Tasks and Scope

TASK 7: AI FOR EM PROBLEM SET (SOIL & GROUNDWATER) - EXPLORATORY DATA ANALYSIS & MACHINE LEARNING MODEL FOR HEXAVALENT CHROMIUM [CR (VI)] CONC. IN 100-H AREA (PNNL)

Subtask 7.3 Algorithm Development for Spatiotemporal Relationship Identification

Subtask 7.4 Publishing AI/ML models on AAML System (NEW)

TASK 8: AI FOR EM PROBLEM SET (SOIL AND GROUNDWATER) - DATA ANALYSIS AND VISUALIZATION OF SENSOR DATA FROM WELLS AT THE SRS F-AREA USING MACHINE LEARNING (LBNL, SRNL)

Subtask 8.6 Publishing AI/ML models on AAML System (NEW)

Task 9: AI for EM Problem Set (Waste Processing)- Nuclear Waste Identification and Classification using Deep learning (SRNL) (NEW)

Subtask 9.1 Algorithm and Model Development to Identify and Classify Nuclear Waste (NEW)

 Subtask 9.2
 Transition Previously Trained Deep Learning Models to the Advance Automated Machine Learning (AAML)

 System (NEW)

Task 1

Waste Information Management System (WIMS)


Subtask 1.1: WIMS System Administration - Database Management, Application Maintenance & Performance Tuning

- Continue to perform day-to-day maintenance and administration to ensure consistent high level of performance of WIMS application.
- Updating patches and OS fixes, updating antivirus engines and definitions, updating drivers and assuring that the network is working properly.
- Hardware upgrades (memory, hard drives, video cards, routers, firewall, etc.).
- Updating backup scripts and backup repository hardware.
- Updated reporting server that supports WIMS Report module.

- FIU received the revised waste forecast data from DOE HQ and incorporated the data on the system.
- Completed integration of 2023 waste forecast and transportation data into WIMS system (Milestone 2022-P3-D5).
- Published 2023 Forecast Waste stream information and DOE was notified on May 5, 2023.
- Status: 6 waste types, 708 waste streams, 36 reporting sites and 36 disposition facilities.

Waste from Savannah River Site	~		
Waste To All Facilities	~		Display Forecast Data
Fiscal Year : From 2023 To 2048 To 2050]	Waste Type: All Materials	~

Subtask 1.5: Cyber Security of WIMS Infrastructure

- Cyber security of WIMS involves securing the network infrastructure that is deployed, secured and maintained in the FIU facility.
- This involves coordination between the FIU security team and DOE Fellows who learn cyber security skills while assisting staff do penetration testing and other tasks to test the overall security of the system at the application, database and infrastructure levels.
- Renewed and configured the yearly Secure Socket Layer (SSL) on WIMS website/server.

The Waste Information Management System (WIMS) Development, Maintenance and New Data Integration

FIU Year 4 Projected Scope

- Subtask 1.1: WIMS System Administration & Cyber Security Database Management, Application Maintenance & Performance Tuning
 - This subtask includes the day-to-day maintenance and administration of the application and the database servers.
 - Administrator will monitor the network and server traffic and performs updates necessary to optimize the application performance.
 - FIU will provide application and database security as well as help desk support to DOE site managers, HQ managers and other users who need assistance with WIMS.
 - Provide cyber security to WIMS infrastructure, application, database server and reporting server.
- Subtask 1.2: Waste Stream Annual Data Integration
 - Update WIMS modules Forecast Data , Waste Stream and GIS map.
 - Update and publish reports.
 - Update and publish transportation module.

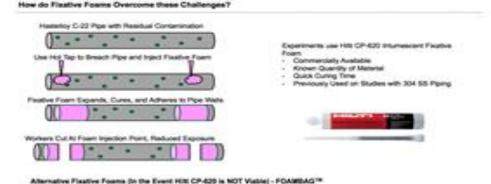
Task 2

D&D Support to DOE EM for Technology Innovation, Development, Evaluation and Deployment

Subtask 2.1: Development of Uniform Testing Protocols and Standard Specifications for Fixative Technologies in Support of Complex-Wide D&D Activities

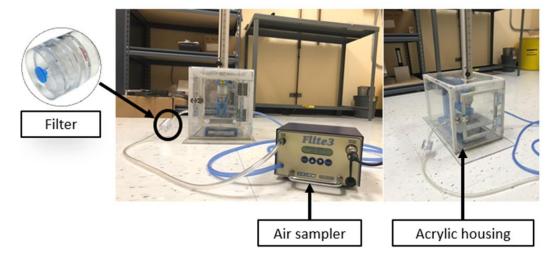
Applied Research Center

- ASTM E3104 (Decon Gels) and E3105 (Permanent Fixatives) were successfully balloted, approved, and renewed.
- Formal integration of ASTM standards related to fixative technology development, testing and evaluation is becoming mainstream (test plans, RFPs, peer-reviewed articles, etc.).
 - SRNL-STI-2023-00005, "Radiation Hardened Foam Cold Test Plan - Phase II: Foam Characterization Testing and Environmental Chamber Testing of FoamBag Fixative Foam", 2023
 - Supporting Foam Fixative Plug site deployment for F/H Labs
 - Lee, E. H., et al., "Removable coatings: Thermal stability and decontamination of steel surfaces from 241Am," Chemosphere, Vol 301, August 2022, 134680
 - FY 22 Minority Serving Institutions Partnership Program (MSIPP), RFP 000749



Subtask 2.1: Development of Uniform Testing Protocols and Standard Specifications for Fixative Technologies in Support of Complex-Wide D&D Activities

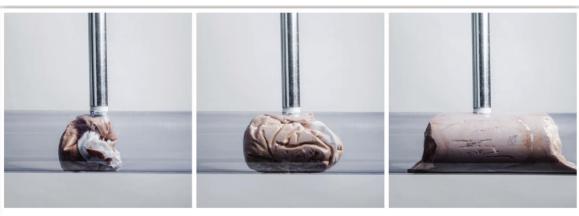
FIU Year 4 Projected Scope


- ASTM E 3191 (Foam Fixatives) updated and balloted
 - Supporting Foam Fixative Plug site deployment for F/H Labs
- ASTM Working Group established to codify experimental design developed in support of "certifying fixative technologies under impact stressors" into a formal testing practice

· FOAMBAG is very similar to the ORANGLOCK technology

- Di sain han bal ananda to the GRANDLOCK technologi
- PU reain that expands to form a permanent seal.
 PAMBAD techniques has been in use in the UK in elevations at Saliefable.
- The POAMBAG technique has been in use in the UK in gloveboxee at Sellafield and me the UK gas industry technical standard TSP/EIS9.

Research Highlights & Accomplishments: Identify & Down-select Most Compatible Foam Technology


<u>Hilti</u>

- A two-component polyurethane (PU) intumescent foam that expands up to six times in volume upon application.
 - Meets ASTM E84 standard.
- Foam is applied through a dispenser and a mixer nozzle attachment.

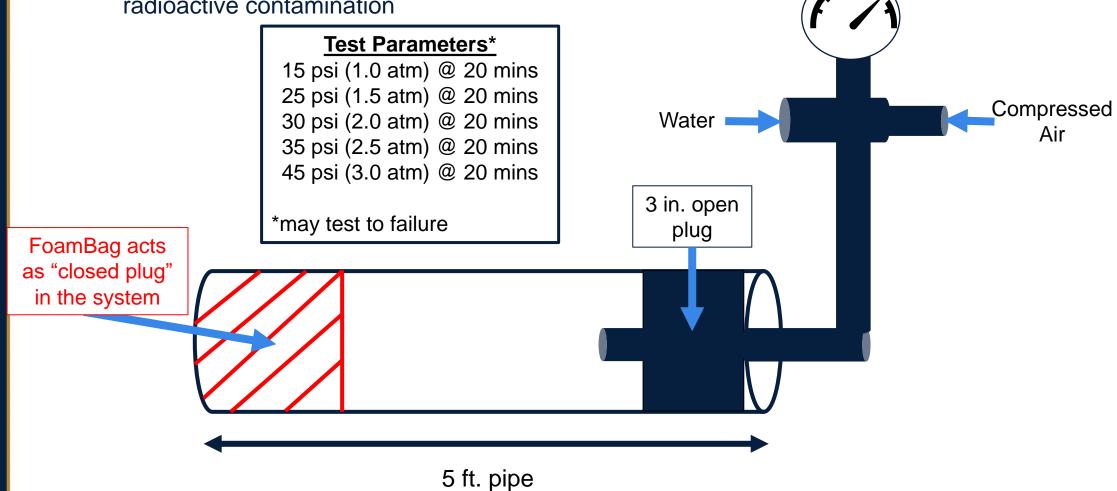
<u>FoamBag™</u>

- Expanding PU resin foam.
 - Used in the UK in gloveboxes at Sellafield & meets the UK gas industry technical standard T/SP/E/59.
- Injected into a semiporous bag via an injection tube which passes up through the standpipe assembly.

The FOAMBAG[™] holds the resin foam in place as it expands. At full expansion some of the foam seeps through the semi-porous panels of the bag to form an adhesive seal with the pipe

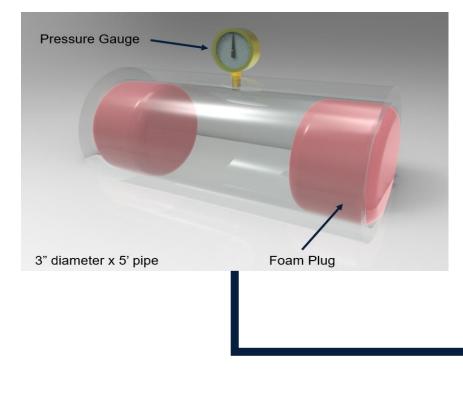
Research Highlights & Accomplishments: Technology Comparison to Support Down-selection

	Curing Time	Max Curing Temp.	Average Plug Strength	Adhesion to Wetted Surface	Fire Retardant	Environmental Chamber	Headspace	Hot Tap Compatible
Hilti	1-3 mins	276°F	7733 lbf	888 lbf	YES	PASS	PASS	FAIL
FoamBag	15-45 mins	277°F	9684 lbf	4741 lbf	YES*	In progress (SRNL)	In progress (SRNL)	PASS


*Fire retardant with addition of Exolit AP 750 additive

Gauge

FIU Year 4 Projected Scope


- Containment / Leak Test
 - Purpose To confirm plug seals pipe and contains radioactive contamination

FIU Year 4 Projected Scope

- Confirm Internal Pipe Pressure Conforms to SRS Manual under the following conditions:
 - During curing process (potential heat generation up to 277°F for 5 mins.)
 - During cutting process (heat generation from mechanical and/or torch cutting methods)

- SRS Manual 1S LLW WAC section 5.3 identifies the maximum amount of allowable pressure within a pressurized container to be 1.5 atm (22 psi).
- Pressure will be monitored for 24 hours.

Applied Research Center Subtask 2.3: Certifying Fixative Technology Performance when Exposed to Impact Stressors Postulated in Contingency Scenarios Highlighted in Safety Basis Documents

Research Highlights & Accomplishments:

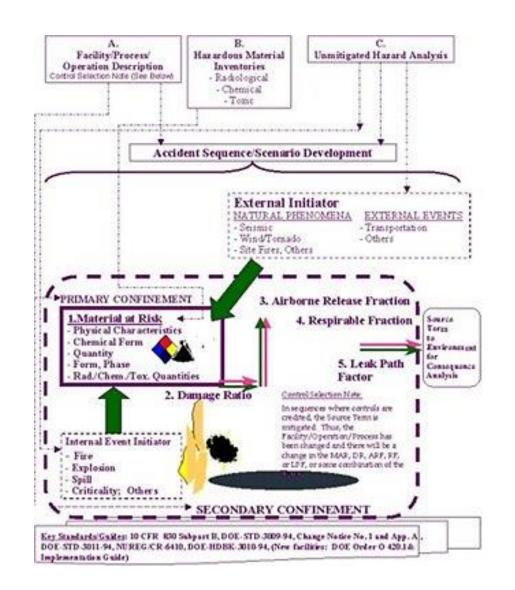
 ARF for loose powder contamination under impact produced an average ARF of 3.47e-04 – reconfirmed the validity of the value presented in the DOE-HDBK-3010, 4e-04.

- Applying fixative technologies significantly reduced ARFs under impact stressors.
 - Supports the addition of a new designation: "Fixative / Polymer State"

	Impact (in-lb) / (kg-cm)	Average Airborne Release Fraction						
	320 / 368	2.23E-04	Contaminant	Impact				
Powder	240 / 276					Average		
	200 / 230	1.05E-05	Gas / Vapor	1.0	High Risk		Impact (in-lb) / (kg-cm)	Airborne
	160 / 184	6.32E-07 Powder 4e-4		- ingli hisk		(III-ID) / (Kg-CIII)	Release Fraction	
Total Average		3.47E-04	3.47E-04 Liquid Metal / Solid	4e-5 No significant airborne release is			320 / 368	5.55E-07
					FD	240 / 276	6.78E-07	
						200 / 230	8.34E-07	
				postulated for this			160 / 184	3.33E-08
				accident configuration.	Low Risk	Tot	al Average	5.25E-07

Subtask 2.3: Certifying Fixative Technology Performance when Exposed to Impact Stressors Postulated in Contingency Scenarios Highlighted in Safety Basis Documents

FIU Year 4 Projected Scope


ASTM Testing Practice

 Draft ASTM Testing Practice and submit to E10.03 for review and publication

Standardize Methodologies for Direct Comparison of Fixative Technologies for Impact Stressors

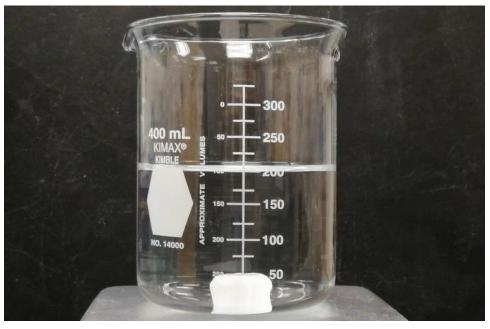
Provide Empirical Data to Support Potential Update to DOE HDBK

Site Needs:

- Development of novel technologies that support Hg remediation in water.
- Address the adsorption of various forms of Hg contaminants.
- Enable an easy, cost-effective method to recycle the used sorbent.

Objectives:

- Design recyclable polydimethylsiloxane micro-ribbons (PDMS-MRs) to achieve Hg²⁺ and CH₃Hg⁺ abatement.
- Confirm application of PDMS-MRs for Hg²⁺ remediation in water.
- Confirm application of PDMS-MRs for CH₃Hg⁺ remediation in water.
- Synthesis of magnetic PDMS-MRs (mPDMS-MRs).
- Confirm the recycling of mPDMS-MRs in water.



Research Highlights & Accomplishments:

Recycling m-PDMS-MRs from water

m-PDMS-MRs in Oil/Water separation

Conclusion:

- 1. The mPDMS-MRs demonstrated excellent capability for Hg remediation.
- 2. Cost effective method when compared to other technologies being investigated.
- 3. Recommend further investigation if correct resources/personnel can be identified.

HU)

Applied Research Center

Technology Development and Deployment Road Map

D&D Roadmap

	Activity	2022	2023	2024	2025
Foam Fixatives ISO F/H Labs Pipe Dismantling	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Completed Phase I Test Plan (T&E of Foam Technology 1)	Complete Phase II Test Plan (T&E of Foam Technology 2)	Complete Phase III Test Plan (Pressure / Leak Testing and Cold Demo of Hot Tap compatibility)	F/H Lab Site Deployment
	ES OFFICERS REGISTRATION	ASTM E3104 Updated	ASTM E3104 Balloted and Approved ASTM E3105	ASTM E 3191 (Foam Fixatives)	ASTM E 3191 Approval & Promulgation as
DOE EM Complex-wide	ASTM INTERNATIONAL MERCENTRAL	ASTM E3105 Updated	Balloted and Approved	updated and balloted	Formal Standard
DOE EM nplex-w	DOE HANDBOOK AIRBORNE RELEASE FRACTIONS/RATES AND RESPIRABLE FRACTIONS FOR NONREACTOR NUCLEAR FACILITIES		Technical		Propose DOE- HDBK-3010
ăĔ	Volume 1 - Analysis of Experimental Data		Progress	Final Technical	
ē			Report	Progress Report	Update
	Non-wove network Without With	Proof-of-			
	MRs MRs	Concept for	Project Ended		
		Hg Remediation			

Applied Research Center

DOE EM Citations Referencing ASTM E10.03 Fixative Technology Standards and Impact Performance

- ASTM E10.03 standards have established a recognized, community-wide, uniform methodology for testing, evaluating, certifying and crediting fixative technologies for use in support of D&D activities and have been extensively cited. A few recent examples include:
 - SRNL-STI-2021-00115, "A Novel Approach to Mitigating the Potential Release of Radioisotopes Under Fire Conditions -Enhancing Fire Resiliency of Radiological Contamination Fixatives During Deactivation & Decommissioning Activities", 2021.

*Integrated into SRS 235-F PUFF Facility Work Plan for Incombustible Fixative site deployment

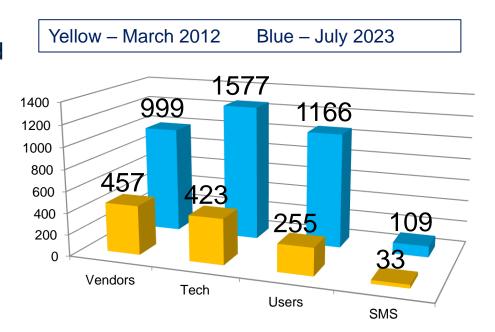
- SRNL-STI-2023-00005, "Radiation Hardened Foam Cold Test Plan Phase II: Foam Characterization Testing and Environmental Chamber Testing of FoamBag Fixative Foam", 2023.
 - *Supporting Foam Fixative Plug site deployment for F/H Labs
- Lee, E. H., et al., "Removable coatings: Thermal stability and decontamination of steel surfaces from 241Am," Chemosphere, Vol 301, August 2022, 134680.
- FY 22 Minority Serving Institutions Partnership Program (MSIPP), RFP 000749
 - PA3: Incombustible fixatives and decontamination agents
 - RN3: R&D leading to the development of these fixatives and agents for a nuclear facility. Also, the development of testing protocols to demonstrate their acceptance.
 - C3: Meets ASTM standard from E10.03. Protocols should be applicable to various DOE facilities
- Certifying Fixative Technology Performance Under Impact Stressors
 - Technical Progress Report, "Certifying Fixative Technologies Impact" submitted for upload to OSTI.
 - Technical Progress Report submitted as Peer-reviewed manuscript, "Determination of Airborne Release Fractions from Loose Powder Contamination under Impact Stress" submitted to the Nuclear Technology Journal, Aug 2023.

Task 3

D&D Knowledge Management Information Tool (KM-IT)

Subtask 3.4: Content Management

Applied Research Center


Research Highlights & Accomplishments:

- Published D&D technologies, vendors, lessons learned, best practices, D&D news, conferences and other content to KM-IT
- Performed QA/QC of existing content in the system
- 33 technologies, 41 articles, 23 events were published on this platform in this fiscal year
- D&D KM-IT web analytics to track usage metrics.
- 1577 D&D technologies
- 1166 registered users
- 999 D&D vendors
- 109 subject matter specialists

Fully searchable resources – Original sources no longer available

- 169 ALARA Center reports archived (Hanford and SRS)
- 231 Innovative Technology Summary Reports archived

Growth from March 2012 to July 2023

Subtask 3.5: Marketing and Outreach

Research Highlights & Accomplishments:

- Reached out to sites/national labs to increase KM-IT user involvement
- Development of newsletters, post cards and factsheets
- Other marketing and outreach to introduce the system to SME who may not be aware of its features and capabilities
- Participation at workshops and conferences such as Waste Management
 - FIU ARC Booth
 - Presented KM-IT poster at WM2023

Dr. Himanshu Upadhyay (FIU), Nancy Bushman (DOE) and Walter Quintero (FIU) in front of the D&D KM-IT poster at WM2023.

Subtask 3.6: D&D KM-IT System Administration

- D&D KM-IT System Administration is an ongoing task, which involves day-to-day administration of servers that house the KM-IT databases and web applications.
- This task includes updating patches and OS fixes, updating antivirus engines and definitions, updating drivers and assuring that the network is working properly.

- Migration/backup of the existing databases and KM-IT modules to latest .NET Framework.
- Testing application before moving to production on staging servers
- This constant administration improve performance, security, stability and long- term support of the system

Subtask 3.7: Cyber Security of D&D KM-IT Infrastructure

Research Highlights & Accomplishments:

- Cyber security of D&D KM-IT involves securing the network infrastructure maintained in the FIU facility.
- Updating of Secure Socket Layer (SSL) for dndkm.org domain.
- Maintaining and optimizing firewall rules.
- Regularly performed penetration testing on network, KM-IT database and application servers.

 Trained DOE Fellows in DOE-EM Cybersecurity lab on advanced security tools commonly used in the industry.

Subtask 3.8: KM-IT Tech Talks

- Conduct D&D related Tech Talk every quarter on the D&D KM-IT platform.
- Collaborate with National Laboratories and/or DOE sites to identify and present technical topics of interest to the community.
- Tech Talks are conducted virtually using an online meeting platform that can be accessed via KM-IT
- Promoted Tech Talks via newsletters, website, emails and flyers developed by FIU.
- Conducted 4 Tech Talks (<u>https://www.dndkm.org/TechTalk</u>)
 - October 19, 2022
 University R&D and Deployment of Robotics Systems at DOE Facilities
 - January 24, 2023 International Perspective on Decommissioning with focus on 3D hazard aware digital and robotics technology-based transformation
 - April 25, 2023 DOE's ALTEMIS Project: Advanced Long-Term Monitoring of Complex Groundwater Plumes
 - July 18, 2023 AI/ML Research support for Advance Long-Term Environmental Monitoring Systems (ALTEMIS)

Applied Research Center

D&D KNOWLEDGE MANAGEMENT INFORMATION TOOL (KM-IT) (HQ, SRNL, INL, ANL)

FIU Year 4 Projected Scope

Subtask 3.4: Content Management

- Publishing D&D technologies, vendors, D&D technologies, lessons learned, best practices, D&D news, conferences and other content to KM-IT
- Perform QA/QC of existing content in the system with assistance of DOE Fellows

• Subtask 3.5: Marketing and Outreach

- Reaching out to sites/national labs to increase KM-IT user involvement
- Participation at workshops and conferences such as Waste Management and engagement with other agencies such as the IAEA.
- Introduce the system to SME who may not be aware of its features and capabilities
- Development of newsletters, post cards, factsheets and other print material to promote KM-IT

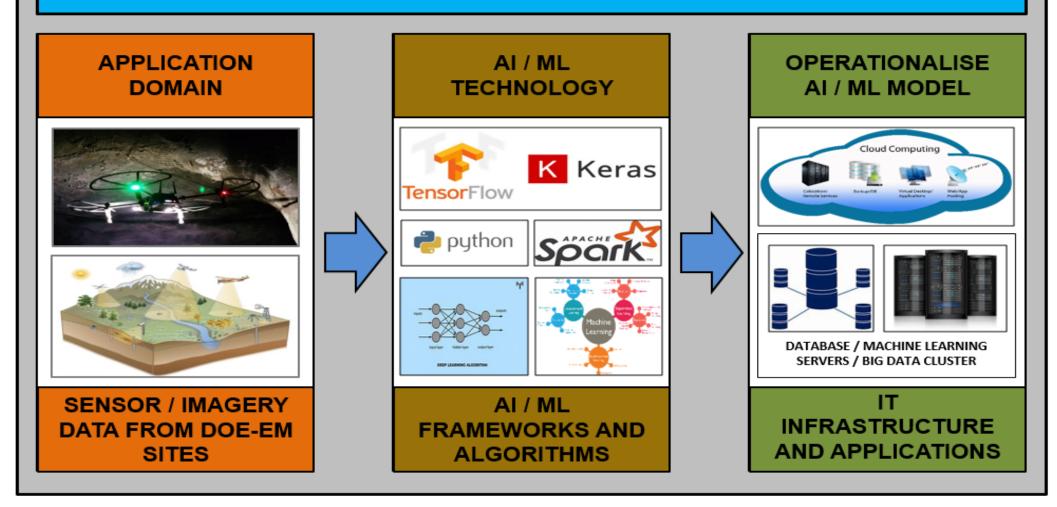
FIU Applied Research

Center

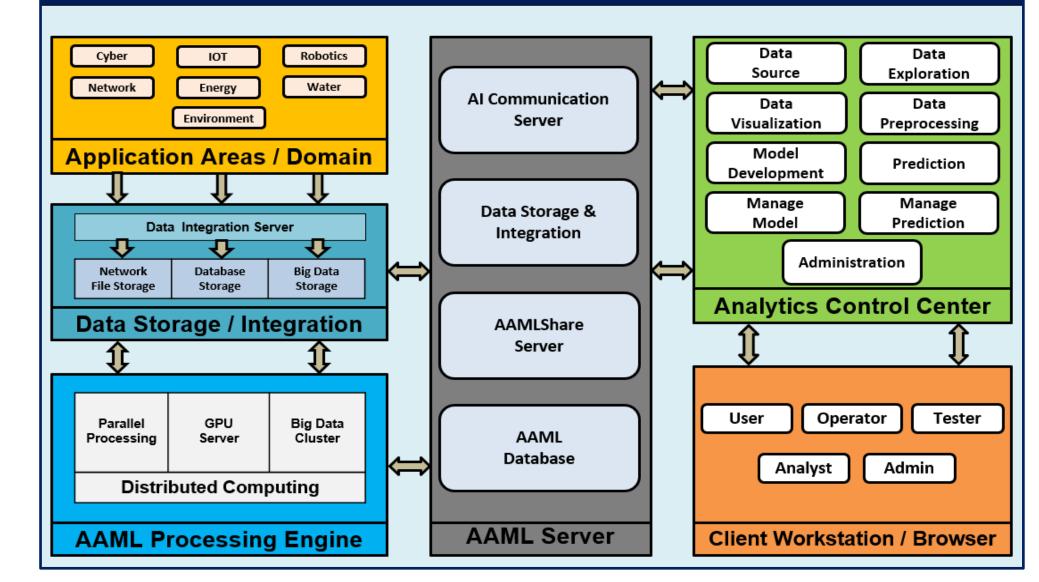
D&D KNOWLEDGE MANAGEMENT INFORMATION TOOL (KM-IT) (HQ, SRNL, INL, ANL)

FIU Year 4 Projected Scope

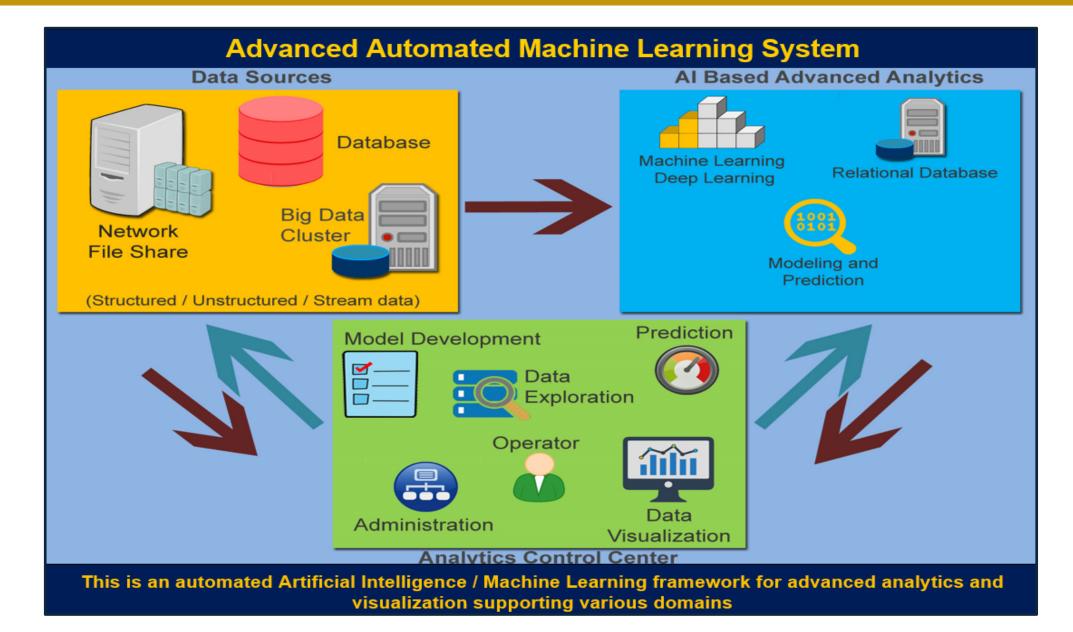
- Subtask 3.6: D&D KM-IT System Administration & Cyber Security
 - D&D KM-IT System Administration is an ongoing task which involves day-to-day administration of servers that house the KM-IT databases and web applications.
 - This task includes updating patches and OS fixes, updating antivirus engines and definitions, updating drivers and assuring that the network (firewall, routers and switches) is working properly.
 - Securing the network by conducting routine cyber security tasks to test the network's vulnerability.
 - Coordination between the FIU security team and DOE Fellows who learn cybersecurity skills while assisting staff do penetration testing and other tasks to test the overall security of the system at the application, database and infrastructure levels.
- Subtask 3.8: KM-IT Tech Talks
 - Conduct D&D related Tech Talk every quarter on the D&D KM-IT platform.
 - Collaborate with National Laboratories and/or DOE sites to identify and present technical topics of interest to the community.
 - Tech Talks will be performed virtually using an online meeting platform (KM-IT)
 - Promote Tech Talks via newsletters, website, emails and flyers developed by FIU.

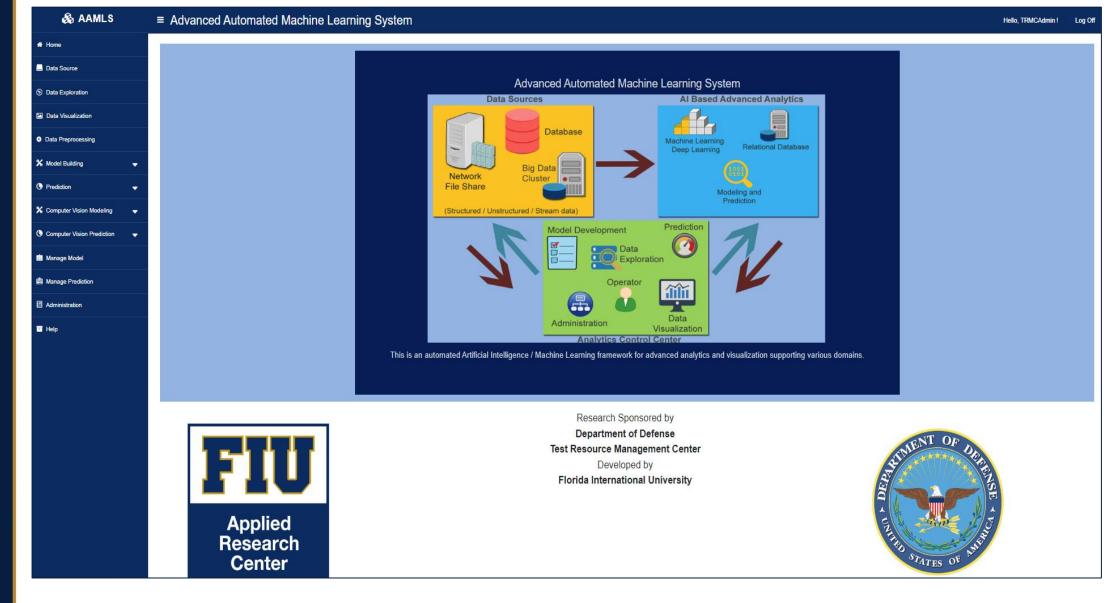

Artificial Intelligence Support to DOE-EM

Advanced Automated Machine Learning System (AAMLS) Transition to DOE-EM

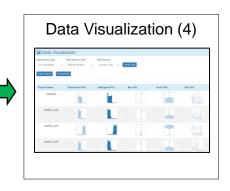


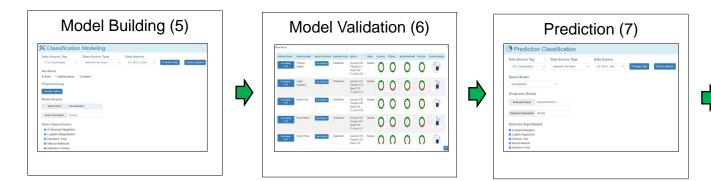
Advanced Automated Machine Learning System (AAMLS)

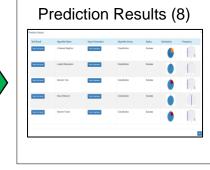

Advanced Automated Machine Learning Architecture


Advanced Automated Machine Learning System (AAMLS)


Advanced Automated Machine Learning System (AAMLS)


Advanced Automated Machine Learning System (AAMLS)


FIU Year 3 Research Highlights:



AAMLS Workflow

- Automation of Machine Learning model development and prediction in few steps
- Application can be used with minimal machine learning knowledge
- Dynamic connectivity to existing data sources in network file share, database and big data cluster
- Explore and visualize datasets prior to building model and prediction
- Access to the historical model and prediction results

Task 7

Al for EM Problem Set (Soil & GW): Exploratory Data Analysis and Machine Learning Model for Hexavalent Chromium [Cr (VI)] Concentration in 100-H Area (PNNL)

Subtask 7.3: Algorithm Development for Spatiotemporal Relationship Identification

Research Highlights & Accomplishments:

- FIU team researched different algorithms to build ML/DL models to predict Hexavalent Chromium contamination concentration using historical Wells datasets.
- A 1-Dimensional Convolutional Neural Network (CNN) and LSTM-DENSE algorithms are employed to build models.
- Developed ML/DL model for prediction of chromium contaminant concentration based on historical data using LSTM-DENSE algorithm.
- Timeseries dataset for the chosen well with contaminant concentration was used to train the model and algorithm was executed 10 times to identify the best model with the desired metrics used for further analysis.

Subtask 7.4: Publishing AI/ML models on AAML System (NEW)

Research Highlights & Accomplishments:

Data Source Tag	Data Source Type	Data Source			
Task7	Network File Share	✓ WellDataTrain	✓ Previe	ew Data Show Features	
Workflow					
Auto Optimizati	ion O Custom				
Preprocessing					
Preprocessing Optio	ns: Default 🗸 Dis	splay			
Model Details					
Model Name	STM-DENSE_Model				
Model Description	STM-DENSE_Model				
Select Algorithm(s)		elect All			
K Nearest Neigh		imeters			
Linear Regression	Dn Display Hyper-Para	imeters			
Ridge Regressio	Display Hyper-Para	imeters			
Lasso Regressio	Display Hyper-Para	imeters			
ElasticNet Regre	ession Display Hyper-Para	imeters			
Random Forest	Display Hyper-Para	imeters			
ExtraTrees	Display Hyper-Para	imeters			
Gradient Boostin	1g Display Hyper-Para	imeters			
AdaBoost	Display Hyper-Para	imeters			
Long Short Term Memory Display Hyper-Parameters					
LSTM-DENSE	Display Hyper-Para	imeters			
eature/Target La	ibel Selection				
Selected Directory					
		Regression\WellDataTra			

AAMLS - Model Building

Subtask 7.4: Publishing AI/ML models on AAML System (NEW)

Research Highlights & Accomplishments:

Prediction Re	gression							
Data Source Tag	Data Source Type	Data Source		_				
Task7 🗸	Network File Share	WellDataTest 🗸	review Data Show Features	3				
Select Model								
LSTM-DENSETest3	*							
Preprocessing								
Preprocessing Options:	Display							
Prediction Details								
Prediction Name LSTM-DEI	NSE_Prediction							
Prediction Description LSTM-DEI	NSE_Prediction							
Select Algorithm(s):	Select All							
LSTM-DENSE	Display Hyper-Parameters							
Feature/Target Label								
Selected Directory								
\\172.16.17.63\AAMLShare\	OrganizationData\TRMC\Regr	ression\WellDataTest						
Features								
				, 199-D4-84, 199-D4-85, 199-D4-8				
				-145, 199-D5-146, 199-D5-153, 19 3-5, 199-D8-53, 199-D8-54A, 199-L				
				51, 699-96-52B, 699-97-48B, 699-9	, 155-06-70, 155-06-71, 15	-D0-72, 133-D0-00, 133-L	50-03, 133-00-30, 133-00-3	1, 199-00-99,
Target Label								
199-D4-98								
				Build Prediction				

AAMLS - Prediction

Subtask 7.4: Publishing AI/ML models on AAML System (NEW)

Applied Research Center

Research Highlights & Accomplishments:

Predictions								
Data Source Tag Data Sour Task7 ✓ Network Fi			Search Predictions OR	Search Pro	dictions			
1	fest Name	Description	Preprocessing	Status	Username	Label(s)	Inserted On	
P View Features P View Results	Test9	Prediction	Show Options	Completed	TRMCAdmin	199-D4-98	5/31/2023 8:28:42 PM	• Delete
View Features View Results	Test8	Prediction	Show Options	Completed	TRMCAdmin	199-D4-98	5/31/2023 8:22:35 PM	• Delete
View Features View Results	Fest5	Prediction	Show Options	Completed	TRMCAdmin	199-D4-98	5/31/2023 8:16:16 PM	• Delete
View Features View Results	ask7WellData_Prediction	Prediction	Show Options	Completed	TRMCAdmin	199-D4-98	5/31/2023 8:04:15 PM	• Delete
View Features View Results	Predtest	Prediction	Show Options	Completed	TRMCAdmin	199-D4-98	5/31/2023 7:55:16 PM	• Delete
View Features View Results	Fest4	Prediction	Show Options	Completed	TRMCAdmin	199-D4-98	5/31/2023 5:17:52 PM	• Delete
View Features View Results	Test3	Regression	Show Options	Completed	TRMCAdmin	199-D4-98	5/31/2023 5:06:03 PM	• Delete
View Features View Results	Test2	Prediction	Show Options	Completed	TRMCAdmin	199-D4-98	5/31/2023 4:39:42 PM	• Delete
View Features View Results	Auto_WellPred	Regression	Show Options	InProgress	TRMCAdmin	199-D4-98	5/31/2023 2:03:36 PM	• Delete
rediction Results								
Test Result	Algorithm Name	ŀ	Hyper-Parameters	Algorith	m Group	Status	Frequency	TimePlot
View Test Result	LSTM-DENSE	I	View Parameters	Regress	ion	Success		

AAMLS - Manage Prediction

Task 7: AI for EM Problem Set (Soil & GW): Exploratory Data Analysis and Machine Learning Model for Hexavalent Chromium [Cr (VI)] Concentration in 100-H Area

FIU Year 4 Projected Scope

- Achieve more consistent accurate prediction performance with current pipeline with the inclusion of more well characteristics other than contaminant concentration.
- Other well characteristics from the sensor data such as specific conductance and/or Ph of water will be explored. Characteristics could also include spatial coordinates of the well and/or water depth level for indication or river stage.
- This work would involve pre-processing features from simple values into vector representations, the addition of another dimension to o input data.
- Explore the use of generative models to create a pipeline that can predict contaminant concentration at a given coordinate point, as opposed to a well.
- These algorithms would include Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and SMOTER (Synthetic Minority Over-sampling TEchnique for Regression).
- Continue to deploy the implemented models on the AAML System.
 - Deep Learning Models will be deployed on the AAML System for automating the contaminant concentration predictions.

Task 8

Al for EM Problem Set (Soil and Groundwater) - Data analysis and visualization of sensor data from the wells at the SRS F-Area using machine learning (LBNL, SRNL)

Subtask 8.6: Publishing AI/ML models on AAML System (NEW)

Research Highlights & Accomplishments:

🙈 AAMLS	■ Advanced Automated Ma	chine Learning System					
# Home							
Data Source	🗙 Regression Modelin	ig					
S Data Exploration	Data Source Tag Data Sou Preventive Maintenance Network F 						
Data Visualization							
Data Preprocessing	● Auto ○ Optimization ○ Custom						
🗙 Model Building 🚽 🚽	Preprocessing						
Prediction	Preprocessing Options: Default V Display						
X Computer Vision Modeling	Model Details						
Computer Vision Prediction	Model Name Water_Contamination_M	bol					
🗎 Manage Model	Model Description Water_Contamination_M	hol					
Manage Prediction	Select Algorithm(s):	Unselect All					
PowerBI Reports	☑ K Nearest Neighbor	Display Hyper-Parameters					
Administration	Linear Regression	Display Hyper-Parameters					
🗖 Help	 Ridge Regression Lasso Regression 	Display Hyper-Parameters Display Hyper-Parameters					
	✓ ElasticNet Regression	Display Hyper-Parameters					
	Random Forest	Display Hyper-Parameters					
	ExtraTrees	Display Hyper-Parameters					
	Gradient Boosting	Display Hyper-Parameters					
	AdaBoost	Display Hyper-Parameters					
	Long Short Term Memory	Display Hyper-Parameters					

AAMLS - Model Building

Subtask 8.6: Publishing AI/ML models on AAML System (NEW)

Research Highlights & Accomplishments:

🙈 AAMLS	Advanced Automated Machine Learning System							
🖶 Home								
Data Source	Prediction Regression							
S Data Exploration	Data Source Tag Data Source Preventive Maintenance Network File S 							
Data Visualization		Share Tritium_Test Preview Data Show Features						
Data Preprocessing	Select Model Water_Contamination_Model							
🗙 Model Building 🗸 🗸	Preprocessing							
♥ Prediction	Preprocessing Options: Display							
X Computer Vision Modeling	Prediction Details							
Computer Vision Prediction	Prediction Details Prediction Name Water_Contamination_Pred							
🖻 Manage Model								
Manage Prediction	Prediction Description Water_Contamination_Pred							
PowerBl Reports	Select Algorithm(s):	Unselect All splay Hyper-Parameters						
Administration		play Hyper-Parameters						
🗃 Help	 ✓ Lasso Regression ✓ ElasticNet Regression ✓ Display 	play Hyper-Parameters play Hyper-Parameters play Hyper-Parameters play Hyper-Parameters						
	Gradient Boosting	play Hyper-Parameters						
		play Hyper-Parameters						

AAMLS - Prediction

Subtask 8.6: Publishing AI/ML models on AAML System (NEW)

Applied Research Center

Research Highlights & Accomplishments:

ediction Results						
Test Result	Algorithm Name	Hyper-Parameters	Algorithm Group	Status	Frequency	TimePlot
View Test Result	K Nearest Neighbor	View Parameters	Regression	Success		
View Test Result	Linear Regression	View Parameters	Regression	Success		
View Test Result	Ridge Regression	View Parameters	Regression	Success		
View Test Result	Lasso Regression	View Parameters	Regression	Success		
View Test Result	ElasticNet Regression	View Parameters	Regression	Success		
View Test Result	Random Forest	View Parameters	Regression	Success		

AAMLS - Prediction Results

Subtask 8: AI for EM Problem Set (Soil and Groundwater) – Sensor Data Analysis and Visualization from the Wells at the SRS F-Area using Machine Learning / Deep Learning (LBNL, SRNL)

FIU Year 4 Projected Scope

- Research and implement advanced deep learning models for time series data:
 - Develop a transformer model for learning temporal and spatial features from insitu real-time sensor data of various analytes from the SRS site. The model's self-attention mechanism can assign significance to different sensor readings, capturing short-term fluctuations and long-term dependencies. This empowers the model to discern temporal dynamics, detect patterns, trends, and anomalies in real-time sensor data.
 - Develop an AutoEncoder model for effectively capturing both temporal and spatial dependencies of various analytes from the SRS site. The model is trained to reconstruct normal sensor data, effectively learning a compressed representation of the input. This approach holds promise for anomaly detection in real-time sensor data, providing a valuable research for early warning systems, fault detection, and maintenance optimization.
- Continue to deploy the implemented models on the AAML System.
 - Deep Learning Models will be deployed on the AAML System for automating the contaminant concentration predictions.

Task 9

Al for EM Problem Set (Waste Processing):

Nuclear Waste Identification and Classification using Deep learning (SRNL) (NEW)

Subtask 9.1: Algorithm and Model Development to Identify and Classify Nuclear Waste (NEW)

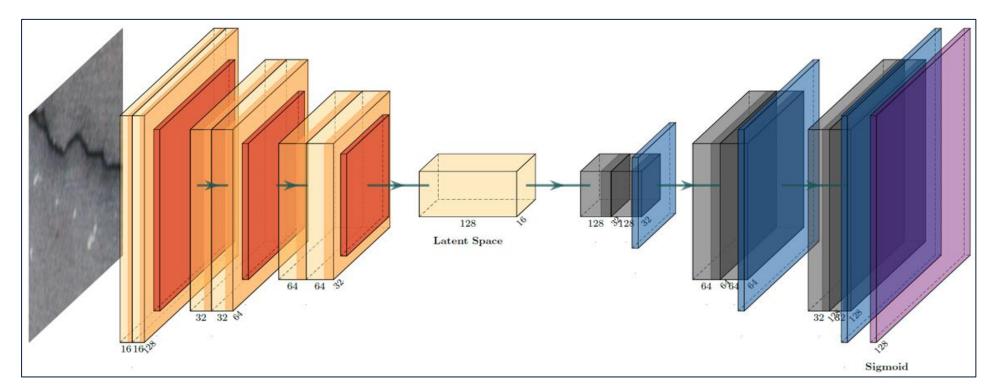
Research Highlights & Accomplishments:

- Implemented YOLOv7 model for Object Detection.
- Implemented YOLOv7 model for Instance Segmentation.
- Implemented STEGO model for Unsupervised Semantic Segmentation.
- Implemented Mask RCNN model for Disparity Image Segmentation.

Subtask 9.2: Transition Previously Trained Deep Learning Models to the Advance Automated Machine Learning (AAML) System ^(NEW)

Research Highlights & Accomplishments:

- Implemented Anomaly Detection Models (Wall Crack Detection).
 - Added a custom model with good performance on detecting cracks on walls.
 - Implemented the ability to customize the models with different number of layers, activation functions, etc., to enhance the performance of the model on new data.
- Implemented Object Detection Models.
 - Added YOLOv3 model that has high performance and low latency when predicting.
 - Implemented the ability to customize the model's confidence and IoU thresholds. Also implemented transfer learning to reduce training time while maintaining a high performance.



Subtask 9.2: Transition Previously Trained Deep Learning Models to the Advance Automated Machine Learning (AAML) System ^(NEW)

Research Highlights & Accomplishments:

• The models developed as part of the Task 6 in the previous year (2022) are deployed on the AAML System.

Convolutional AutoEncoder (CAE) Deep Learning Architecture

Subtask 9.2: Transition Previously Trained Deep Learning Models to the Advance Automated Machine Learning (AAML) System ^(NEW)

Research Highlights & Accomplishments:

🚓 AAMLS	Advanced Automated Machine Learning System
# Home	
Data Source	X Image Classification Modeling
S Data Exploration	Data Source Tag Data Source Type Data Source Preventive Maintenance Network File Share WallCrack ImageClassification train Preview Data Show Classes
Data Visualization	
Data Preprocessing	 Auto Optimization Custom
✗ Model Building	Preprocessing
Prediction	Preprocessing Options: Default V Display
X Computer Vision Modeling	Model Details
Computer Vision Prediction	Model Name Crack_Classification_Mode
🖆 Manage Model	Model Description Crack_Classification_Mode
Manage Prediction	Select Algorithm(s): Unselect All
PowerBI Reports	Convolutional Neural Network Display Hyper-Parameters
Administration	 VGG Network Display Hyper-Parameters RES Network Display Hyper-Parameters
- Help	Inception Network Display Hyper-Parameters
	☑ Efficient Network Display Hyper-Parameters
	✓ Alex Network Display Hyper-Parameters

AAMLS - Computer Vision Modeling - Classification

Subtask 9.2: Transition Previously Trained Deep Learning Models to the Advance Automated Machine Learning (AAML) System (NEW)

Research Highlights & Accomplishments:

🗞 AAMLS	Advanced Automated Machine Learning System
🖶 Home	
Data Source	Prediction Image Classification
Data Exploration	Data Source Tag Data Source Type Data Source Preventive Maintenance Network File Share WallCrack ImageClassification test Preview Data
Data Visualization	
Data Preprocessing	Select Model Crack_Classification_Model
★ Model Building -	Preprocessing
Prediction	Preprocessing Options: Display
X Computer Vision Modeling	Prediction Details
Computer Vision Prediction	Prediction Name Crack_Classification_Predic
🖻 Manage Model	Prediction Description Crack_Classification_Predic
Manage Prediction	Select Algorithm(s): Unselect All
PowerBI Reports	Convolutional Neural Network Display Hyper-Parameters
Administration	VGG Network Display Hyper-Parameters
- Help	RES Network Display Hyper-Parameters Inception Network Display Hyper-Parameters
	 Efficient Network Display Hyper-Parameters Alex Network Display Hyper-Parameters

AAMLS - Computer Vision Prediction - Classification

Subtask 9.2: Transition Previously Trained Deep Learning Models to the Advance Automated Machine Learning (AAML) System ^(NEW)

Research Highlights & Accomplishments:

	<u> </u>					
Prediction Results						
Test Result	Algorithm Name	Hyper-Parameters	Algorithm Group	Status	Distribution	Frequency
View Test Result	Convolutional Neural Network	View Parameters	Image Classification	Success		
View Test Result	VGG Network	View Parameters	Image Classification	Success		
View Test Result	RES Network	View Parameters	Image Classification	Success		
View Test Result	Inception Network	View Parameters	Image Classification	Success		
View Test Result	Efficient Network	View Parameters	Image Classification	Success		
View Test Result	Alex Network	View Parameters	Image Classification	Success		
Algorithm Name: Convol	utional Neural Network	Download Results				
1	Predicted	1	Filename		Image	
CrackedWalls		data\00242.jpg			_	
SmoothWalls		data\00356.jpg				
CrackedWalls		data\00480.jpg			-	

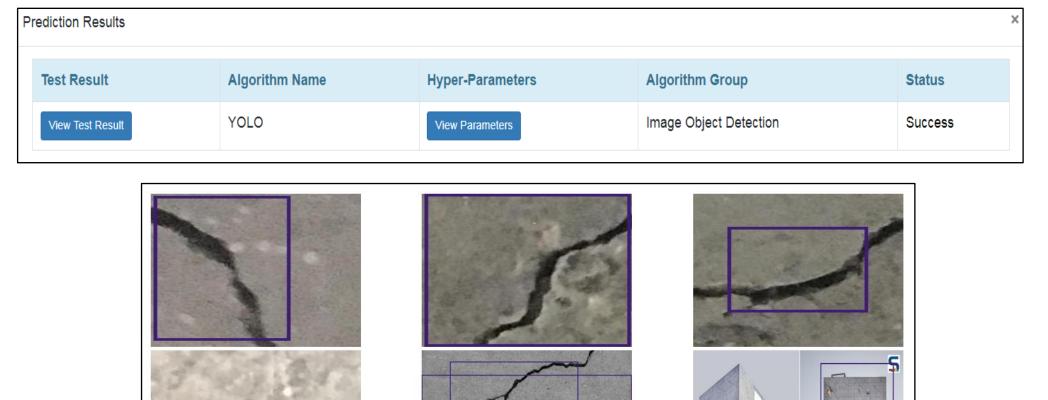
Subtask 9.2: Transition Previously Trained Deep Learning Models to the Advance Automated Machine Learning (AAML) System (NEW)

Research Highlights & Accomplishments:

🙈 AAMLS	Advanced Automated Machine Learning System						
Af Home							
Data Source	X Image Object Detection Modeling						
S Data Exploration	Data Source Tag Data Source Type Data Source Preventive Maintenance Network File Share WallCrack ObjectDetection train Preview Data Show Classes						
Data Visualization							
Data Preprocessing	 Auto Optimization Custom 						
🗙 Model Building 🚽 🚽	Preprocessing						
Prediction	Preprocessing Options: Default V Display						
X Computer Vision Modeling 🚽	Model Details						
Computer Vision Prediction	Model Name Crack_Detection_Model						
🖻 Manage Model	Model Description Crack_Detection_Model						
Manage Prediction	Select Algorithm(s): Select All						
PowerBI Reports	✓ YOLO Display Hyper-Parameters						
Administration							
🖬 Help	Class Selection						
	Selected Directory \\172.16.11.66\shared2\ACC_Data\AdvancedCyberAnalysis\ObjectDetection\WallCracks\Training Classes Crackw						

AAMLS - Computer Vision Modeling - Object Detection

Subtask 9.2: Transition Previously Trained Deep Learning Models to the Advance Automated Machine Learning (AAML) System ^(NEW)


Research Highlights & Accomplishments:

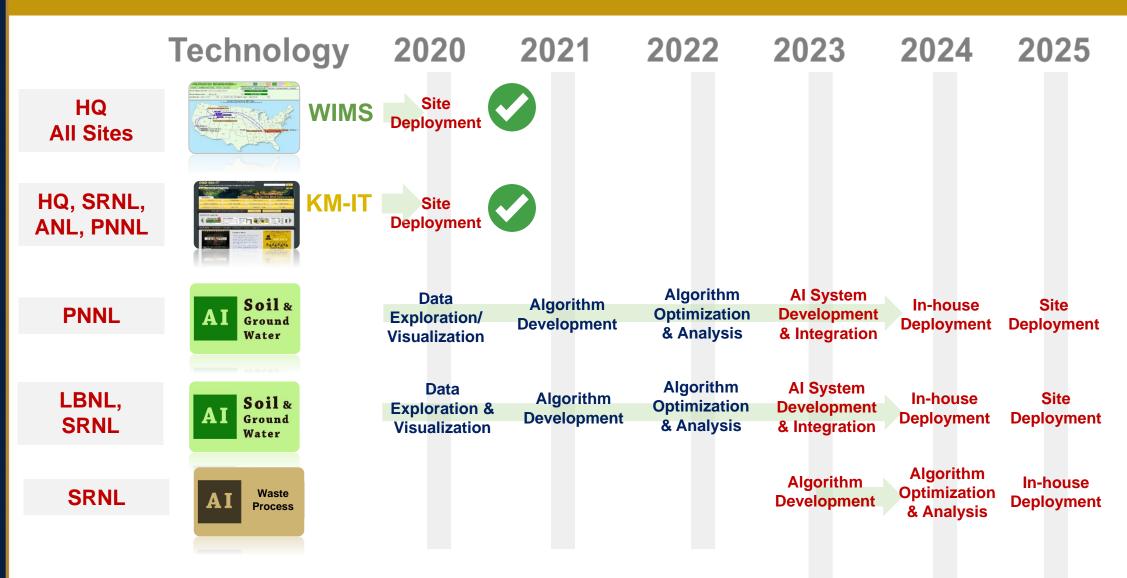
🗞 AAMLS	E Advanced Automated Machine Learning System							
# Home	(Densities Income Object Detection							
Data Source	Prediction Image Object Detection							
S Data Exploration	Data Source Tag Data Source Type Data Source Preventive Maintenance Network File Share WallCracks ObjectDetection test Preview Data							
Data Visualization	Preventive Maintenance + Waincracks Object/Detection test +							
Data Preprocessing	Select Model							
🗙 Model Building 🛛 🚽	Crack_Object_Detection_Model ~							
Prediction	Preprocessing Preprocessing Options: Display							
X Computer Vision Modeling -	Prediction Details							
Computer Vision Prediction 🚽	Prediction Name Crack_Detection_Prediction							
📋 Manage Model	Prediction Description Crack Detection Prediction							
Manage Prediction	Prediction Description Clack_Detection_Prediction							
PowerBI Reports	Select Algorithm(s): Unselect All YOLO Display Hyper-Parameters							
Administration								
T Help	Class Selection							
	Selected Directory							
	\\172.16.11.66\shared2\ACC_Data\AdvancedCyberAnalysis\ObjectDetection\WallCracks\Testing							
	Classes							
	Crackw							
	Build Prediction							

AAMLS - Computer Vision Prediction - Object Detection

Subtask 9.2: Transition Previously Trained Deep Learning Models to the Advance Automated Machine Learning (AAML) System (NEW)

Research Highlights & Accomplishments:

AAMLS - Computer Vision Prediction Results - Object Detection



FIU Year 4 Projected Scope

- Research and implement an object detection algorithm with the following properties:
 - Does not require labeled data to learn to detect a new object.
 - Has the ability to choose which objects to detect, not just every foreground object.
 - $_{\odot}\,$ Has real-time or close to real-time inference speeds.
- Continue to deploy the implemented models on the AAML System.

DOE EM IT/AI Deployment Roadmap

Applied Research Center

DOE EM IT/AI Deployment Roadmap

- WIMS Web application deployed at <u>https://emwims.org</u> - Used by DOE sites, disposition facilities and DOE HQ
- KM-IT Web application deployed at <u>https://www.dndkm.org</u> - Used by DOE sites/facilities, National Laboratories, DOE HQ and D&D community
- AI PNNL (Soil & Ground Water) AI Models will be deployed on AAMLS to be used by PNNL
- AI SRNL (Soil & Ground Water) AI Models will be deployed on AAMLS to be used by LBNL, SRNL
- AI Waste Process (SRNL) Site deployment

DOE-FIU Cooperative Agreement

Upcoming Events Announcement

U DOE Fellows Poster Exhibition

Applied Research Center

A STEM WORKFORCE DEVELOPMENT PROGRAM SPONSORED BY THE U.S. DEPARTMENT OF ENERGY

fellows.fiu.edu

IU DOE Fellows Induction Ceremony

Applied Research Center

Save the Date

DOE-FIU Science & Technology Workforce Development Program's

Research

Th DOE Fellows Induction Ceremony *Innual* (Class of 2023)

Host: Applied Research Center, Florida International University

When: Wednesday, November 8, 2023 at 12:00 pm

Where: FIU Modesto Maidique Campus Graham Center (GC) Ballroom 11200 SW 8th St, Miami, FL 33174

A collaboration between the U.S. Department of Energy's Office of Environmental Managemen and Florida International University's Applied Research Center

Thank You. Questions?