

DOE-FIU Cooperative Agreement Annual Research Review - FIU Year 3

Automation of Waste Segregation Using Robot Manipulator

Joel Adams

Advancing the research and academic mission of Florida International University

Applied Research Center

Automation of Waste Segregation Using Robot Manipulator

Overall Needs:

- Currently personnel are utilized to segregate low-level waste in a space efficient manner.
- Automation of this task would enhance the safety of the personnel and increase the speed and efficiency of the work.

Objectives:

- Create an end-to-end solution for waste segregation of low-level waste that have arbitrary geometric and inertial characteristics.
- Leverage state-of-the-art algorithms in fields such as manipulator kinematics, deep reinforcement learning, and computer vision in order to equip a robot arm with the ability to sort waste.
- Investigate other avenues for enhancing the performance of the solution.

FIU Year 3 Highlights:

- Integrated a segmentation machine learning model made by DOE
 Fellow Aris Duani Rojas into ROS2 via topics and custom tree nodes for the UR3e's behavior tree.
- Developed a C++ program to take input from the segmentation model and the depth camera's data and reconstruct a point cloud of identified objects in a 2D image.
- Interned at the Engineer Research and Development Center (ERDC) for the Army Core of Engineers and developed software for collaborative task management between a fleet a robots.

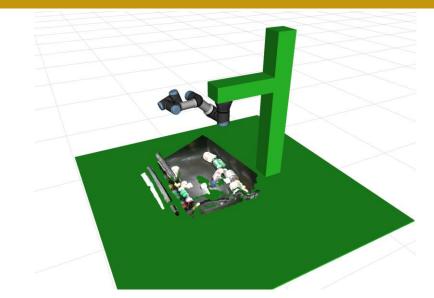


Figure 1: Visualization of live robot data such as depth camera points, URDF, and virtual kinematic constraints

Figure 2: Live results from segmentation model looking inside the simulated waste bin

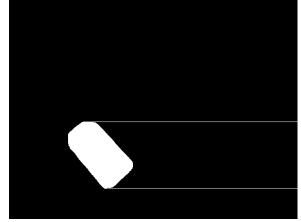


Figure 3: Point-in-polygon algorithm was used to determine which depth image points to isolate for point cloud

Waste Segregation Progress:

- Software for object detection, isolation, and point cloud building is intended to work time step by time step so that multiple angles can be captured with the moving robot arm.
- Segmentation is capable of making errors; however, it is exceptionally rare and appears to be very robust.
- The point cloud reconstruction using depth camera data still has issues to be worked out.

Figure 4: Mistake that segmentation model can make

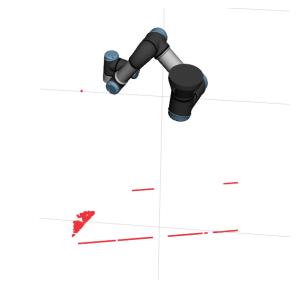


Figure 5 : Imperfections that occur as a result of single object point cloud reconstruction

2023 Internship at ERDC:

- Utilized two large mobile robots to
 develop fleet management software
 in C++ by centralizing a task board
 node on a parent robot using a
 parent-children paradigm.
- Tested various experimental uses of tools such as the ROS2 domainbridge and ROS1 bridge.
- Gained invaluable experience in computer networking, ROS2, and other fields.

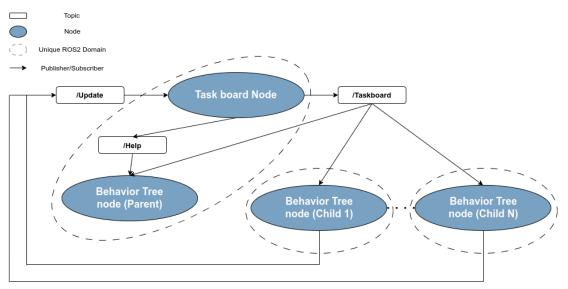


Figure 6: Diagram of task board node and how it enables communication between platforms

Future work

- Bring together all software developed for the UR robot and begin testing simulated waste segregation.
- Fix issues experienced with collaborative robot software, bring multiple platforms at ARC up to speed, and integrate into the developed stack.
- Make a path forward for PhD dissertation proposal that utilizes work from both projects.

Acknowledgments

- Anthony Abrahao
- Dr. Leonel Lagos
- Dr. Ravi Gudavalli
- Jordan Klein (Internship Mentor)
- Joseph Sinicrope
- Engineer Research and Development Center
- DOE-FIU Science and Technology Workforce Development Program

 Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM00005213.

Thank You. Questions?