

DOE-FIU Cooperative Agreement Annual Research Review – FIU Year 4

Exploring Hydroxyapatite's Capacity for Uranium Sorption and Desorption

Valeria Ocampo

DOE Fellow

Worlds Ahead

Advancing the research and academic mission of Florida International University

Background

- Old Rifle site in Rifle, CO. Functioned as an ore-processing plant to produce Uranium ore.
- The ore-processing operation led to the groundwater, surface water, and sediments becoming contaminated.
- Uranium contamination in groundwater and surface water can lead to acute health effects, including cancer and kidney damage.
- Hydroxyapatite Ca₁₀(PO₄)₆(OH)₂) was utilized in attempts to remediate this site and others with similar circumstances.

Hydroxyapatite Functions

- Hydroxyapatite (HAp, Ca₁₀(PO₄)₆(OH)₂), is composed of calcium and phosphate.
 - HAp can exchange its calcium ions (Ca²⁺) with uranium species (such as: Uranyl Ion-UO₂²⁺) making it effective for uranium remediation.
 - Different scenarios were set up to view how varying stoichiometric ratios affect HAp formation. Scenario A and Scenario C were chosen for further experiments.

Applied Research

Center

• Scenario B not used for following experiments due to impurities.

3

Stoichiometric Ratios used for HAp Synthesis.
 Precipitate formed after 6 weeks. 3) Dried HAp

Desorption Studies

Applied Research Center

Uranium sorbed onto HAp using solid-toliquid ratio of 1.0 g/L with 0.02 g of HAp.
250 ppb U
0.02 g HAp
pH: 7
0.1M HCI/NaOH

 Samples were collected and analyzed through Inductively Couples Plasma-Mass Spectroscopy (ICP-MS).

Both Scenario A (SA) and Scenario C (SC) samples had average removal of 95-100%.

Uranium Removal % of Scenario A and Scenario C Samples.

Desorption Process at Varying pH

- Subsequently supernatant was removed and replaced with 20 mL DIW at pH 4, 7, and 9.
- pH was monitored and adjusted with 0.1M HCI/NaOH.
- Scenario A samples exhibited higher amounts of average uranium desorption %.
 - Scenario A had a regularly higher amount of desorption at all pHs.
 - Highest average desorption % at pH 4, with a range of 42-44% desorption.

1) Samples Being Prepared to be Centrifuged at 2700 RPM for 30 Minutes. 2) Final Average Desorption Percentage of Scenario A and Scenario C.

Applied Research Center

Conclusions & Path Forward

- Applied Research Center
- Future experiments will continue working with 250 ppb Uranium solution and 0.02 g Hydroxyapatite.
- Alter environmental conditions of samples to explore how desorption of Uranium from HAp is affected.
 - Temperature:7°C
 - Anoxic Conditions

DOE Fellow working in glove box.
 Fellow working with ICP-MS.

J Internship Site Background

- Applied Research Center
- Grand Junction, CO site operated as a refinery to produce uranium oxide. The refinery managed to produce an estimated 2.36 million pounds of uranium oxide.
- Uranium mill tailings from oreproduction caused Uranium contamination in surface water, groundwater, and sediments.
- Column experiments were performed with HAp to examine how sediments would react when brought into contact with HAp.

Department of Energy Office of Legacy Management, Grand Junction, CO

FIU Column Setup

Applied Research Center

Valeria Ocampo (left) and Daniel Ohlson (Right) mixing Calcium-Citrate and Phosphate Solutions.

Columns in Oxic Conditions

FIU Results of NP-3 [DIW] Applied Research Center Pour

Pour Volume	1	2	3	4	5	6	7	8	9	10	11
DIW	460.285	20.482	0	74.26	19.468	25.4	14.8	6.386	0	16.127	11.757
NPW	213.9	23.178	0	0	16.239	17.462	0	2.788	0	14.995	19.91
6-2N	256.81	59.227	111.805	62.506	16.239	78.977	116.53	141.617	0	240.312	144.426

- Dr. Leonel Lagos, FIU
- Dr. Ravi Gudavalli, FIU
- Ms. Jalena Dayvault, U.S. Department of Energy Office of Legacy Management
- Dr. Raymond Johnson, U.S. Department of Energy Office of Legacy Management
- DOE-FIU Science and Technology Workforce Development Program
- Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM00005213.

Thank You. Questions?