

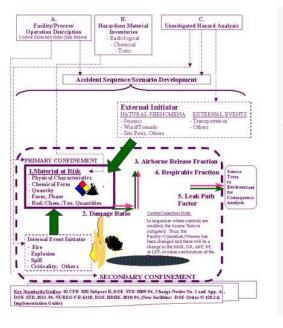
Project 3 D&D

Derek Gabaldon (DOE Fellow)

DOE-FIU Science and Technology Workforce Development Program Applied Research Center Florida International University

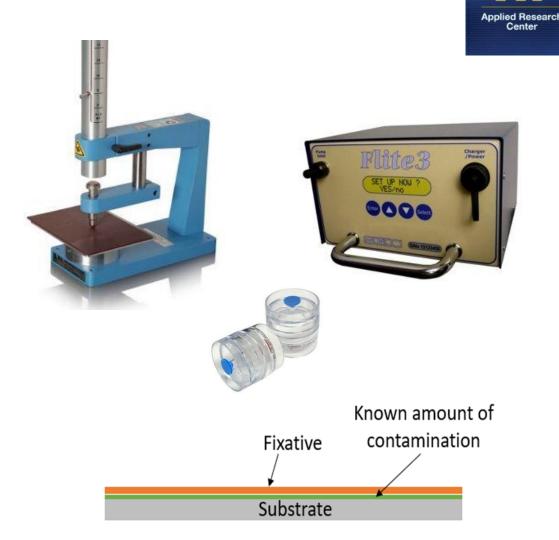
FLORIDA INTERNATIONAL UNIVERSITY

Project 3 D&D Mission Sets and Research Areas



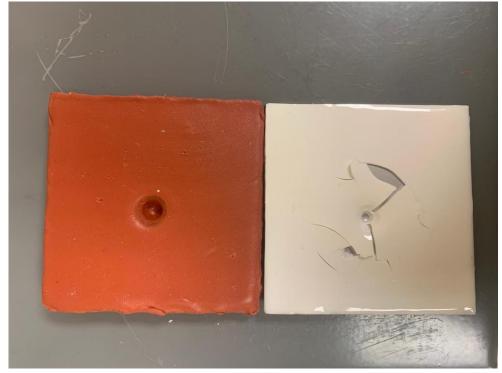
- Leveraging ASTM International's E10.03 Subcommittee to develop standards and testing protocols for D&D technologies
 - Foundation for a "standards-based" technology test and evaluation program
- Adapting COTS-based Intumescent Technologies for D&D Applications
 - Incombustible Fixative Coating ISO SRS 235-F PUFF Facility
 - Incombustible Foam Fixatives as "Plugs" to Decommission Piping
- Empirically quantifying operational performance of fixative technologies
 - Open Air Demolition activities (e.g.: impact and environmental stressors)
 - Safety Basis contingency scenarios (e.g.: fire and extreme heat stressors)

FLORIDA INTERNATIONAL UNIVERSITY


DOE Site/Facility	Facility Fire Events Explosion Events Loss of Confineme (Spill) Events		Loss of Confinement (Spill) Events	Natural Phenomena Hazards	Other Events	
RFETS Bldg 440	• 1,200 Drum Fire (EU) • 15 Crate Fire (U) • Truck Fire (EU)		 LLW Repack Spill (U) Drum Spill (A) 	• Earthquake Collapse (U)	Aircraft Crash (EU)	
RFETS Bldg 664	3 Drum Fire (U) 15 Crate Fire (U) 336 Drums + 72 Crates Fire (EU) Truck Fire (EU)		Multi-Container Drop	• Earthquake Collapse (U)	 Aircraft Crash (worst- case) (EU) Aircraft Crash (realistic case) (EU) 	
SRS APSF	Accountability Msmt. Room Fire (U)	 Explosion in Repackaging Area (A) 	1984 - 1994 - Inc.	 Seismic Induced Full Facility Fire (U) 		
SRS HB-Line	Full Facility Fire (EU) Full Facility Fire & Secondary Events (EU) Intermediate Fire (U) Intermediate Facility Fire & Secondary Events (EU)		• Spill (A)	Earthquake with Secondary Events (EU)		
SRS Bldg 235-F	Fire - Best Case (U) Fire - Worst Case (U)			 Design Basis Earthquake (EU) 		
SRS SWMF	• TRU Pads - Internal Culvert Drum Fire (U)	• TRU Pads - Culvert Explosion (U)	TRU Pads - High Energy Vehicle Impact (EU) TRU Pads - Dropped Steel Box (A)	TRU Pads -Tornado (EU)	634-7E Buried Waste Helicopter Crash (EU)	
Hanford WRAP Facility	• 4 Drum Fire (U) • Single Drum Fire in Glovebox (U)	 Drum Explosion with 4 Drum Fire (U) Single Drum Explosion in Glovebox (U) 	Solid Waste Box Failure (A)	Design Basis Earthquake (U) Beyond DBE (EU)		
INEEL RWMC	• Vehicle Fire (U)	Drum Explosion (A)	Box Spill (A)	 Design Basis Earthquake (U) 		
LANL RAMROD Facility	Small Fire (A) Medium Fire (EU) Large Fire (EU)	 Small Natural Gas Explosion (A) Large Natural Gas Explosion (EU) 	Coring Glovebox Spill (A)	 Design Basis, Earthquake (U) 	Aircraft Crash (EU)	

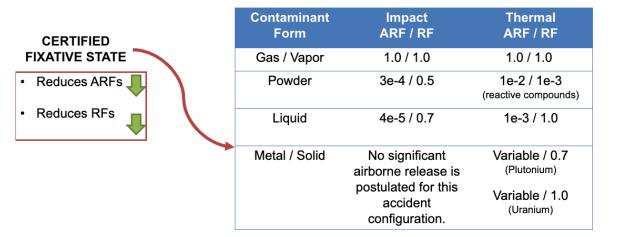
- Contamination release is a major concern, especially during decommissioning and deactivation processes
- One current focus is quantifying potential positive effects of COTS fixative coating technologies to mitigate contamination release under various stressors
 - Impact
 - Thermal
 - Water
- We have begun testing fixatives under impact stress per the ASTM D2784 standard test method

- To quantify positive effect in mitigating contamination release due to impact, we will:
 - Contaminate steel coupon samples with known amount of Cesium Chloride (surrogate contaminant)
 - Apply fixative coatings to required thickness
 - Strike coupons using impact tester within a sealed housing
 - Collect released contamination using air sampler into filters
 - Use ICP-MS to quantify the amount of Cesium, in the surrogate, collected and compare to initial known amount



FLORIDA INTERNATIONAL UNIVERSITY

Results/Discussion



A coupon coated with FireDam (left) showing no failure next to a coupon coated with PBS (right), which failed upon impact

- Impact tests were performed on PBS and FireDam to get baseline figures (with no surrogate contamination)
- Impact testing of FireDam shows promising results with no failure at maximum load (320 in-lb)
- PBS begins to fail at 56 in-lb
- A layering method may be the optimal method for mitigating contamination release

- Baseline measurements for performance of COTS fixative technologies under impact stress is under way
- FireDam seems to remain effective under impact stress
- A layering method is proposed to achieve optimal effectiveness in mitigating risk of contamination release

FLORIDA INTERNATIONAL UNIVERSITY

Future Work

- Continue to perform baseline tests
- Perform impact tests of fixative coatings on contaminated substrates
- Perform tests with contaminated substrates in sealed container and collect released contaminants
- Use ICP-MS to quantify release of contamination
- Populate Fixative Coatings matrix to compare coatings and assess which option is best for mitigating risk under operational stressors

	Fixative Coatings							
	PBS	FireDam	FD + PBS	ABC	ArmorSeal			
Impact (ASTM D2794 320 in- lb)	X	\checkmark						
Elongation (ASTM D522)	\checkmark		\checkmark					
Cracking (ASTM D522)	\checkmark		\checkmark					
Thermal (NRC 10 CFR 71.73 1475 °F for 30 mins.)	X	\checkmark	\checkmark	×				
Water Immersion (NRC 10 CFR 71.73 3 ft. depth for 24 hours)		\checkmark						
Other Environmental Tests								

Acknowledgements

- FIU ARC Mentors
 - Joseph Sinicrope
 - Mellissa Komninakis
- DOE-FIU Science and Technology Workforce Development Program
 - Dr. Leonel Lagos
 - Dr. Ravi Gudavalli
- Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM0000598.