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ABSTRACT OF THE DISSERTATION 

DEVELOPMENT OF AN ENHANCED HYDRO-GEOCHEMICAL MODEL TO 

ADDRESS MERCURY-SPECIATION FATE AND TRANSPORT IN AQUATIC 

ENVIRONMENTS 

by 

Nantaporn Noosai 

Florida International University, 2014 

Miami, Florida 

Professor Hector R. Fuentes, Major Professor 

An awareness of mercury (Hg) contamination in various aquatic environments 

around the world has increased over the past decade, mostly due to its ability to 

concentrate in the biota. Because the presence and distribution of Hg in aquatic systems 

depend on many factors (e.g., pe, pH, salinity, temperature, organic and inorganic 

ligands, sorbents, etc.), it is crucial to understand its fate and transport in the presence of 

complexing constituents and natural sorbents, under those different factors. An improved 

understanding of the subject will support the selection of monitoring, remediation, and 

restoration technologies.  

The coupling of equilibrium chemical reactions with transport processes in the 

model PHREEQC offers an advantage in simulating and predicting the fate and transport 

of aqueous chemical species of interest. Thus, a great variety of reactive transport 

problems could be addressed in aquatic systems with boundary conditions of specific 

interest. Nevertheless, PHREEQC lacks a comprehensive thermodynamic database for 

Hg. Therefore, in order to use PHREEQC to address the fate and transport of Hg in 
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aquatic environments, it is necessary to expand its thermodynamic database, confirm it 

and then evaluate it in applications where potential exists for its calibration and continued 

validation. 

The objectives of this study were twofold: 1) to develop, expand, and confirm the 

Hg database of the hydrogeochemical PHREEQC to enhance its capability to simulate the 

fate of Hg species in the presence of complexing constituents and natural sorbents under 

different conditions of pH, redox, salinity and temperature; and 2) to apply and evaluate 

the new database in flow and transport scenarios, at two field test beds: Oak Ridge 

Reservation, Oak Ridge, TN and Everglades National Park, FL, where Hg is present and 

is of much concern.  

Overall, this research enhanced the capability of the PHREEQC model to simulate 

the coupling of the Hg reactions in transport conditions. It also demonstrated its 

usefulness when applied to field situations. 
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I. INTRODUCTION AND LITERATURE REVIEW 

 

As part of this study, over 150 related publications were identified and reviewed. 

They are documented in the reference section. This section highlights the most relevant 

publications and state-of-the art knowledge and concerns about mercury (Hg) in the 

aquatic environment.  

 

1.1 Background and Literature Review 

 An awareness of Hg contamination in various aquatic environments from around 

the world has increased over the past decade. Hg is of concern because it is extremely 

toxic. Exposure to Hg in any of its forms under different circumstances may cause 

serious health problems, such as nervous system damage, immune system damage, 

chromosome damage and neurobehavioral disorders (Clarkson and Magos, 2006; Zahir et 

al., 2005). One of the worst disasters caused by mercury contamination is the Minamata 

disease. The contamination of Minamata Bay, Japan, occurred due to the releases of 

mercury from a chemical manufacturing plant during 1950 to 1971. This resulted in 

mercury poisoning, causing an epidemic scale illness in fish and humans (Matsuyama et 

al. 2011; Tsuda et al. 2009). Since then, many other concerns related to Hg have come 

up.  

Hg in the environment comes from two major sources. First, it is from the earth’s 

crust. Second, it is from anthropogenic activities (e.g. manufacturing industry, fossil fuel 

power plant industry, etc.) (Fitzgerald, 2014; Pacyna 2002). These activities have resulted 

in the release of both forms of Hg (i.e. inorganic and organic forms) into the environment 
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(Pacyna, 2002; Wang et al., 2004; Appelo and Postma, 2005). The Hg is transported to 

aquatic environments by soil erosion and discharge from anthropogenic activities (Wang 

et al., 2004; Appleo and Postma, 2005). There are different forms of Hg present in natural 

water, including elemental mercury (Hg
0
), ionic mercury (Hg

+
, Hg

2+
) and organic 

mercury [e.g., (CH3Hg
+
, (CH3)2Hg]. Organomercury compounds are of concern because 

of their toxicity and ability to concentrate in the biota. These compounds are released into 

the environment as biocides, but can also be produced by enzymatic methylation of 

cations or due to reactions with biogenic methylating agents (Southworth et al., 2001; 

Ravichandran, 2004; Morel et al., 1993). The high animal tissue affinity of 

organomercury compounds, allows bioaccumulation and biomagnification of MeHg in 

aquatic organisms (e.g., fish) and humans to occur easier than other Hg species 

(Ravichandran, 2004; Dong et al., 2010).  

Similarly to other metals, the fate of Hg in aquatic systems depends on its 

speciation, which is a function of the following processes (Facemire et al., 1995 

Ravichandran, 2004; Morel et al., 1993):  

- Precipitation and dissolution of minerals; 

- Dissolution and dissociation of weakly acidic gases; 

- Complexation with inorganic (e.g., OH
-
, CO3

-
, SO4

2-
) and organic (e.g., 

DOC constituents, such as humic and fulvic acids) ligands; 

- Sorption on solids; and 

- Biological activity. 

Complexation, sorption and biological activity could be considered at 

thermodynamic equilibrium or under kinetic conditions, which may affect speciation. In 
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addition, speciation also depends on the mixture of metals and complexing agents, pH, 

temperature, redox, salinity, major ion composition and sorbing solids (Arias et al., 2004; 

Wang et al., 1991; Wnalin et al., 2007).  

In the atmosphere, Hg occurs naturally and anthropogenically in its neutral or 

elemental state. Hg
0
 can be converted to an oxidized form of Hg(II) (Ravichandran, 2004; 

Dong et al., 2010). Hg(II) is transferred to the watersheds and water bodies through wet 

and dry deposition (Ravichandran, 2004). Reddy and Aiken (2001) reported that, in 

oxic/aerobic water, Hg(II) is bound to inorganic and organic ligands, hydroxide and 

chloride ligands, which depends on pH and chloride concentration, resulting in Hg(OH)
+
, 

Hg(OH)2, Hg(OH)3
-
, HgCl

+
, HgCl2, HgCl3

-
, HgClOH and Hg-Humates (humic acid). 

Zhong and Wang, (2009) found that, in anoxic environments, inorganic and organic 

sulfides play an important role and bind mercury strongly, resulting in HgS0, Hg(S2H)
-
, 

Hg(SH)2 and Hg(RS)
+
 species (Zhong and Wang, 2009; Harmon et al., 2004; Jay et al., 

2002; Karlsson and Skyllberg, 2003; Qian et al., 2002). The activity of sulfate-reducing 

bacteria (SRB) in the presence of mercury–sulfur compounds, promotes the methylation 

of mercury (Zhong and Wang, 2009; Harmon et al., 2004). The MeHg, that is produced 

by the bacteria in anoxic zones, transports to surface water and binds with inorganic and 

organic ligands to eventually be transferred and accumulated in biota through the food 

chain (Harmon et al., 2004; Bengtsson and Picado, 2008; Hill et al., 2010; Hintelmann et 

al., 1997). The study of Li et al. (2010) indicated that MeHg can be converted to a 

volatilized mercury form (Hg
0
) through photodegradation (Li et al., 2010). 

Hg has also been found to be in high concentration in sediment, from high 

absorption in clay (Arias et al., 2004; Reddy and Aiken, 2001); transport of Hg can thus 
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occur through its attachment to sediment (Lui et al., 2008). The latter implies that site 

stratigraphy, sediment type, and distribution coefficient (Kd) are important factors for 

estimating Hg transport in sediment (Reddy and Aiken, 2001). 

 

1.2 Rationale  

Because Hg fate and transport processes in an aquatic system are very complex, 

the study of these processes requires multiple disciplines of science including, geological, 

hydrological, chemical, biological and microbiological studies (Mackay et al., 1995; 

Parkhurst and Appelo, 1999; Appelo and Postma, 2005). The Hydro-geochemical model, 

PHREEQC, is a tool to integrate the processes affecting the fate and transport of the 

contaminants in an aquatic system. The PHREEQC model was selected for this study to 

assess the fate and transport of Hg. It is a chemistry and transport integrated model, 

which allows modelers to simulate the change of Hg chemical processes simultaneously 

with its transport in aquatic environment. However, it is recognized that there are many 

factors other than chemical processes (e.g., biological, microbiological processes) that 

can affect the fate of Hg in aquatic environments. For example, the activities of some 

bacteria and the effect of sunlight can transform Hg from one form to another (Li et al., 

2010). This study emphasizes the chemical processes of Hg, while its biological and 

microbiological processes are not considered. Use of PHREEQC model is a cost effective 

way for assessing the fate and transport of Hg in aquatic environments and for developing 

management plans for the reduction of Hg exposure in such systems. However, in order 

for the PHREEQC model to best represent the fate and transport of Hg, further 

development of the model is needed. There are many challenges involved in developing 
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PHREEQC model, which include the enhancement of Hg database of the model and 

testing and confirmation of the developed model. 

 

1.3 Research Gaps 

The combining of equilibrium and kinetic chemical reactions with the transport 

processes in models such as PHREEQC, improves the accuracy of predictions of the fate 

and transport of chemicals of interest in aquatic environments. Thus, a great variety of 

reactive transport problems and boundary conditions of interest to researchers and 

practitioners can now be addressed for aquatic systems. Because of the versatile 

capabilities and the reliability of the PHREEQC model, it has been used widely in 

geochemical research area by many researchers. It is definitely of great benefit to use this 

robust geochemical-transport model to predict and address the fate and transport of Hg in 

aqueous systems. However, in order to use PHREEQC to predict the fate and transport of 

Hg, its Hg database needs to be improved. Although the model includes a Hg 

thermodynamic database, it only supports some speciation calculations. More 

specifically, it does not have a database for absorption processes that play a major role in 

the fate and transport of Hg in an aquatic system. Moreover, the existing Hg database 

only represents Hg speciation with much limitation.  

 

1.4 Research Objectives  

The research objectives are: 

1. To develop, expand, and confirm the Hg database of the 

hydrogeochemical model “PHREEQC” to enhance its capability to 
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simulate the fate of Hg species in the presence of complexing constituents 

and natural sorbents, under different conditions of pH, redox, salinity and 

temperature.  

2. To apply and evaluate the new database in flow and transport scenarios, at 

two field test beds: Oak Ridge Reservation, Oak Ridge, TN and 

Everglades National Park, FL, where Hg is present and of much concern.  

 

1.5 Research Questions 

Two important questions are answered at the completion of this research effort, as 

follows: 

1. Can the enhanced database describe the difference in behavior of the 

various partitioning species when subjected to processes, such as 

dissolution/precipitation, ion exchange, and surface complexation? 

2. Can the enhanced PHREEQC model be used in site applications to best 

understand the fate and transport of Hg in aquatic environments?   
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II. APPROACH  

 

In this study, the two test beds: Oak Ridge Reservation (ORR) at Oak Ridge, TN, 

Florida Everglades National Park (ENP), FL, are selected. The high Hg contamination in 

East Fork Poplar Creek (EFPC) located in the ORR area at Oak Ridge, TN, has raised 

concern among researchers due to the accidentally discharged and spilled Hg from the Y-

12 Plant into the surrounding environment in the 1950s (Southworth and Brooks, 2011). 

Dong et al. (2010) reported high concentration of MeHg in EFPC and found that neither 

total Hg nor dissolved inorganic Hg concentrations correlate with MeHg concentration in 

EFPC water. This suggests that speciation, mobility, and accumulation of Hg in EFPC are 

controlled by site aquatic, and geochemical characteristics, and conditions (Dong et al., 

2010).  

ENP is a unique wetland environment in the USA, with a subtropical ecosystem 

and wildlife, where its sediment and biota have been found to contain a very high level of 

Hg concentration (Axelrad et al., 2008; Feng et al., 2009; KBN 1992). As the researchers 

found at EFPC, the total Hg and MeHg concentration in ENP are uncorrelated (Dong et 

al., 2010; Feng et al. 2009; Duvall and Barron, 2000), which also suggests that site 

aqueous,  geochemical characteristics, and conditions, such as complex types, sorbents, 

pH, redox, temperature, dissolved organic carbon (DOC), etc., play an important role in 

the fate, that is transformation, mobilization, and accumulation of Hg in the aquatic 

environment (Evans and Engel, 1994; Ravichandran, 2004; Stumm and Morgan, 1996). 

The development of a Hg thermodynamic database of the PHREEQC coupled-

transport model will enhance the model capability to predict the Hg fate and transport in 
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different aquatic environments. The enhanced model should then be a valuable tool to 

study the Hg behavior, fate and transport in selected test-beds. The approach used to 

enhance and develop the PHREEQC coupled transport model is described in this section. 

The research deliverable is also listed. 

 

2.1 Research Method 

The main tasks are the following: 

1. Conduct a thorough literature review on thermodynamic properties (∆H, 

stability constants) of Hg complexation including;  

i. Speciation and dissolution/precipitation, 

ii. Ion exchange, and 

iii. Surface complexation (i.e., surface complexation constant for 

various minerals). 

2. Improve the PHREEQC model’s Hg thermodynamic database using the 

collected data in 1. 

3. Confirm the enhance PHREEQC coupled-transport model applicability to 

calculate the Hg chemical reaction processes, including speciation, ion 

exchange, and surface complexation and transport process using 

documented laboratory and field data. 

4. Use the enhanced model to conduct the scenario base simulations 

including: 

i. Effect of water pe, pH, and temperature on Hg species distribution, 
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ii. Sensitivity analysis of water pe, pH, and temperature to Hg 

speciation distribution, 

iii. Effect of exchangers, with the role of ion exchange, to Hg 

concentration in water, 

iv. Effect of selected minerals, with the role of surface complexation, 

to Hg concentration in water, 

v. Fate and transport of Hg in typical groundwater with the role of ion 

exchange and surface complexation, and 

vi. Fate and transport of Hg in typical surface water with the role of 

ion exchange and surface complexation. 

5. Use the enhanced PHREEQC coupled-transport model to study the Hg 

fate and transport in ORR and ENP test-bests. 

i. Determine the chemical and physical factors that influence the Hg 

presence in the test-beds, 

ii. Determine the main factors that affect the Hg immobilization and 

mobilization at the test-beds. 

The default concentration unit, calculated by the model is molality (i.e. mol/kg), 

which is the ratio of the number of moles of solute to the mass of solvent. However, the 

model also allows the modeler to define the concentration in mass concentration unit, 

which is the ratio of mass of solute to the volume of solvent (e.g. mg/L, µg/L). The mass 

concentration unit (e.g. mg/L, µg/L) is used in this dissertation to report the results. This 

is to be consistent with the unit used in regulations established by the Environmental 

Protection Agency (EPA).   
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2.2 Research Deliverables 

1. The development of an enhanced PHREEQC database that is capable of 

best simulating Hg speciation under thermodynamic equilibrium conditions in the 

presence of complexing agents and natural sorbents (when the chemical processes of 

dissolution and precipitation, ion exchange, or surface complexation occur).  

2. Development and analysis of the effects of Hg speciation in both batch 

mode and flow and transport simulations, at the two test beds, as a function of site 

characteristics and conditions that can affect the immobilization or mobilization of Hg 

species.  
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III. MODEL BACKGROUND AND THEORY 

 

This section describes the currently available hydrogeochemical models at the 

time this study was conducted. The best hydrogeochemical models, PHREEQC and 

PHAST, were selected based upon their capabilities to simulate the Hg chemical and 

transport processes. The governing equations of the models are also described in this 

section.  

 

3.1 Hydrogeochemical Modeling 

Hydrogeochemical modeling helps in understanding and predicting the difficult 

combination of chemical and mineral interrelated processes that control the fate of 

chemical species as well as the transport in aquatic environments. Hydrogeochemical 

models have developed in recent years to simulate the geochemical processes only 

(geochemical model) and to also simulate both geochemical processes and transport (i.e., 

flow and transport model). Geochemical models include GEMS, MINEQL+, 

MINTEQA2, and Visual MINTEQ, among others. Flow and transport models that have 

just become available in the very recent years are PHREEQC and PHAST models.  

3.1.1 Geochemical Modeling 

Geochemical models are mostly used to simulate chemical equilibrium with 

thermodynamic databases of the elements of environmental interest. Equilibrium models 

assume that all reactions have completed and are in equilibrium with one another. The 

models have common capabilities in calculating speciation, sorption, and precipitation of 

aquatic chemical components. The model capabilities are described as follows.  
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GEMS: GEM-Selektor (GEM-Selektor Geochemical Software) was developed by 

Paul Scherer Institute in Switzerland. It is an interactive thermodynamic modeling of 

heterogeneous aquatic geochemical systems. The model uses the method of Gibbs Energy 

Minimization to calculate the multi-speciation at the equilibrium. It has capabilities to 

calculate aqueous-solid solution equilibrium, adsorption and ion exchange. It includes a 

built-in (default) thermodynamic database of common aqueous elements. The model 

provides the option for extension and modification of its database by the modeler. 

MINEQL+: It was first developed at MIT, by John Westall and Francois Morel. It 

has abilities to perform the calculation of equilibrium aqueous speciation, of dissolved 

and solid phases, adsorption and ion exchange, at low temperature (0-50 °C) and low to 

moderate ionic strength (< 0.5 M). The MINEQL+ version 3 is available for the DOS 

operating system and is free for use, while version 4.6 is available for the window 

operating system, but at a cost to the modeler (MINEQL+, Geochemical Software). 

MINTEQA2: This program is sponsored by the US Environmental Protection 

Agency (USEPA). It is an equilibrium speciation model, alike other geochemical models. 

MINTEQA2 has capabilities to calculate dissolved and solid phases and adsorption. The 

thermodynamic database in MINTEQA2 is well developed, including common aqueous 

elements. MINTEQA2 is a free and robust geochemical model that has been used by 

researchers. It is available for the DOS operating system (MINTEQA2, Geochemical 

Software). 

 Visual MINTEQ: It is a development of MINTEQA2; it has been maintained by 

Jon Petter Gustafsson at KTH, Sweden, since 2000. It has capabilities to calculate 
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aqueous equilibrium reactions as MINTEQA2. The difference with MINTEQ is that 

Visual MINTEQ is available for the windows operating system (Visual MINTEQ). 

3.1.2 Flow and Transport 

PHREEQC and PHAST models are models that handle the kinetics of chemical 

reactions, reverse reactions and link the concentrations of species to simulations of 1-

dimensional (PHREEQC) and 3-dimensional (PHAST) transport scenarios (U.S. 

Geological Survey, 1999 and 2010). 

PHREEQC: It is a product of the US Geological Survey (USGS), developed by 

Parkhurst and Appelo in 1999. It is designed to perform low-temperature aqueous 

geochemical calculations. It is similar to other geochemical models having capabilities to 

calculate speciation, saturation index, batch reaction, surface complexion, adsorption and 

ion exchange at equilibrium. In addition, PHREEQC also has capabilities to simulate 

reversible reactions, kinetic reactions, with rate expressions defined by the modeler and 

one dimensional (1-D) transport simulations. Its databases contain those from 

MINTEQA2 and other USGS’s models (i.e., WATEQF4). All these capabilities make 

PHREEQC more complete and advanced model than others. The coupling of 

geochemical and transport processes in PHREEQC allows the studying the behavior of 

aqueous components under flow and transport conditions at sites of interest. The model 

can link the chemical equilibrium (i.e., batch-reaction) calculations to simulations of flow 

and transport under two types of boundaries and time conditions (i.e., flux or third-type 

boundary and the Dirichlet or first-type) (see Appendix A for details of PHREEQC 

model’s capabilities and limitations). 
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PHAST: It is an integrated computer program between Geochemical model 

(PHREEQC) and the flow model (HST3D). PHAST is designed to simulate 

multicomponent, reactive solute transport in 3-dimensional flow system. The calculations 

of flow and transport are based on a developed HST3D model (Parkhurst et al., 2010) 

while the geochemical reactions are simulated with the geochemical model PHREEQC 

(Parkhurst, 1995; Parkhurst and Appelo, 1999). The PHREEQC model is embedded in 

PHAST (see Appendix B for details of PHAST model’s capabilities and limitations). 

Current hydrogeochemical model capabilities are summarized in Table 1.    

Table 1 The main features and capabilities of available hydrogeochemical models 

A: Average-comparable to other models; G: Good-better than other models; L: Limited; na: not available 

Models 

 

Hg 

database 

 

Expandable 

database 

Saturation 

Index 

calculation 

Precipitation 

Calculation 

Sorption 

processes 

Inverse 

model 

Transport 

processes 
System 

GEMS A G G G A Na na 

 

Windows 

 

 

MINEQL A L G G A Na na 

 

 

DOS 

 

 

MINTEQA

2 
A L G G G Na na 

 

DOS 

 

 

Visual 

MINTEQ 
A L G G A Na na 

 

Windows 

 

 

PHREEQC A G G G G G G 

 

Windows 

 

 

PHAST A G G G G G G DOS 
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All of the Hg databases available in PHREEQC and PHAST models are for speciation 

calculations of common inorganic Hg species, but they lack organic complexation, ion 

exchange and sorption stability constants. 

 PHREEQC and PHAST are thus the chosen models to support this research 

because of their various capabilities (Appelo and Postma, 2005; Halim et al., 2005; 

Parkhurst and Appelo, 1999; Tiruta-Barna, 2008). It is foreseen that, once the databases 

are enhanced, it will allow a more objective assessment and analysis of the fate of Hg, in 

flow and transport conditions, at the two applications test beds, namely, EFPC and ENP, 

where Hg is present and of concern. 

 

3.2 PHREEQC and PHAST Governing Equations 

The combined implementation of these models, products of the USGS, offers a 

mathematical framework to perform a wide variety of low-temperature aqueous 

geochemical calculations and to simulate dispersion (or diffusion) and stagnant zones in 

1D-transport (PHREEQC) and 3D-transport calculations. It was mentioned earlier that 

PHREEQC model is embedded in PHAST and used to calculate the geochemical 

reactions. The geochemical reactions (aqueous, exchange, and surface species at 

equilibrium) in both PHREEQC and PHAST are calculated using the activities and mass-

action equations of an aqueous chemical system. The transport of substances of interest in 

the system is predicted by the advection-reaction-dispersion equations.  

3.2.1 Activity and Mass-Action Equations 

The activity and mass-action relation for each species in the models can be 

defined by the modeler. Models then derive the unknown mole of the species (i) from the 
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mass-action relation. The mole of i in the system is then calculated by differentiation of 

equations derived with respect to i (Parkhurst and Appelo, 1999).  

3.2.1.1 Solution species 

PHREEQC calculates the aqueous species at the thermodynamic equilibrium. 

However disequilibrium in the initial solution is allowed. For each aqueous species i, the 

unknowns: activity, ai, activity coefficient, γi, molality, mi , and moles in solution, ni will 

be calculated by PHREEQC. The following relationship ai = γimi and ni = miWaq apply for 

all aqueous species (Waq is the mass of solvent water in an aqueous solution) (Parkhurst 

and Appelo, 1999). For example, the association reaction of the aqueous species is 

Hg(OH)2 + 2H
+
 = Hg

2+
 + 2H2O. The log K for this reaction at 25 °C is 6.09, which 

results in the mass-action equation: 

2

09.6

]][[

][
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




HHg(OH)

Hg

2

2

       (Eq. 1) 

In general, mass-action equations can be written as equation 2. 





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m

imC
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        (Eq. 2) 

where:  Ki = a temperature-dependent equilibrium constant 

cm,i =  the stoichiometric coefficient of master species m in the species i, 

the value can be positive or negative   

Maq = the total number of aqueous master species 

From mass-action expression, the mole of aqueous species i can be derived as equation 3 

i
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,

        (Eq. 3) 
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PHREEQC then uses the Newton-Raphson method to differentiate the total number of 

moles with respect to an unknown (see equation 4). 

      









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m

imimaqii dIγ
μ

adCWdndn InInIn ,
    (Eq. 4) 

The activity coefficient γi is expressed as a function of ionic strength, I (Davies equation). 

The relationship between γi and I of aqueous species in PHREEQC is defined as equation 

5. The partial derivatives of the activity coefficient equation with respect to ionic strength 

are shown in equation 6 (Parkhurst and Appelo, 1999). 
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where A is constant which is only dependent on temperature, and zi is the ionic charge of 

aqueous species i. 

In PHREEQC, the modeler will need to define and input the chemical equation for the 

mole-balance and mass-action expressions, the log K, ΔH, and the activity coefficient 

parameters for each aqueous species. PHREEQC will then calculate the aqueous species 

using equations 1-6 (Parkhurst and Appelo, 1999). 

3.2.1.2 Exchange species 

PHREEQC calculates the ion-exchange at equilibrium using mass-action 

expressions based on half-reactions between aqueous species and an unoccupied 

exchange site (Appelo and Postma, 2005) for each exchanger e, The unknowns of each 

exchange species ie of exchanger e that will be calculated by PHREEQC are the activity,
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ei
a , and the moles, 

ei
n . PHREEQC defines 

ei
a  to be the equivalent fraction times an 

activity coefficient
ei

γ . The equivalent fraction is the moles of sites occupied by an 

exchange species (
eieie nb

, where
eieb

, is the number of equivalents of exchanger e occupied 

by the exchange species
ei ) divided by the total number of exchange sites (

eT ). The 
ei

a  thus 

can be expressed as equation 7 (Parkhurst and Appelo, 1999). 

e

eieie

eiei T

nb
γa

,
         (Eq. 7) 

The mass-action for exchanged species is required in PHREEQC. For example, the 

association reaction for the exchange species HgX2 is Hg
2+

 + 2X
-
 = HgX2 where X

-
 is the 

exchange master species in the default database. The log K for Hg half-exchange reaction 

derived from literature is -1.39, thus the mass-action reaction can be written as equation 8 

(Parkhurst and Appelo, 1999). 

 22

239.1
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In general, mass-action equations can be written as equation 9. 


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
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m
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,

        (Eq. 9) 

where:   

  
ei

K = half-reaction selectivity constant 

eimc
, = the stoichiometric coefficient of master species m in species ie, the 

value can be positive or negative   

From mass-action expression, the mole of species ie can be derived as equation 10. 
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        (Eq. 10) 

PHREEQC then calculates the total derivative of the moles of species ie with respect to 

the master unknowns as in equation 11 (Parkhurst and Appelo, 1999). 
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PHREEQC requires the modeler to define and input the chemical equation for the mole-

balance and mass-action expressions, the log K, ΔH, and the activity coefficient 

parameters for each exchange species. PHREEQC will then calculate the unknowns of 

each exchange species ie using equations 8-11. 

3.2.1.3 Surface species 

The differences between the surface complexation and the ion exchange defined 

in PHREEQC are that the surface reactions are not half-reactions and surface species may 

be anionic, cationic, or neutral. PHREEQC calculates the surface complexation processes 

using the theory proposed by Dzombak and Morel (1990). This theory assumes that the 

number of active sites, Ts, the specific area, As (m
2
 /g), and the mass, Ss (g), of the 

surface are defined. PHREEQC assumes the activity of a surface species to be equal to 

the mole fraction of a given surface-site type that is occupied. This means that a surface 

species has an activity of 1 when it completely covers a given kind of surface site 

(Parkhurst and Appelo, 1999). 

In the default PHREEQC database the surface of ferrihydrite is defined as “Hfo”. 

Hfo_s represents a high affinity or a strong site while Hfo_w is a week site. In 
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PHREEQC the neutral surface species at weak and strong sites of ferrihydrite are defined 

as “Hfo_wOH” and “Hfo_sOH” and the surface association reaction with Hg (for a weak 

site) can be written as Hfo_wOH + Hg(OH)2 + H
+
 = Hfo_wOHg

+
 + 2H2O. The mass-

action can be expressed as equation 12 (Parkhurst and Appelo, 1999). 

RT

sψF

e
HOHHgwOHHfo

wHgHfo
K








]][)(][_[

]_[

2

int      (Eq. 12) 

where 
intK  is the intrinsic equilibrium constant, F is the Faraday constant (96493.5 J V

-1
 

eq 
-1

), is the potential at surfaces (volts), R is the gas constant (8.3147 J mol 
-1 

K
-1

), T is 

temperature (Kelvin) and the term RT

sψF

e


 is a factor that indicates the work involved in 

moving a charged species (H
+
) away from a charged surface (Parkhurst and Appelo, 

1999).    

In general, mass-action equations can be written as equation 13: 
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where the subscript (sk) indicates the parameter for surface-site type k (weak or strong in 

Dzombak and Morell, 1990) in surface s, and 
)( ksZi is the net change in surface charge 

due to the formation of the surface species (Parkhurst and Appelo, 1999). 

The derived equation for the total mole of surface species 
)( ksi  is shown in equation 14: 
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PHREEQC calculates the total derivative of the moles of the species
)( ksi  with respect to 

the master unknowns using equation 15: 
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    (Eq. 15) 

Modelers are required to input the chemical equation for the mole-balance and mass-

action expressions, the log K, ΔH, and surface properties (surface area, surface type, and 

the number of equivalents of each site type). PHREEQC then calculates the unknown of 

surface species i using equations 12-15. 

3.2.2 Transport Equations for Ground and Surface Water 

PHREEQC has the capability to calculate and combine all the chemical reactions 

with transport processes. The transport processes that can be simulated by PHREEQC 

include diffusion, advection, advection and dispersion, and advection and dispersion with 

diffusion into the stagnant zone (Parkhurst and Appelo, 1999). 

3.2.2.1 Advection-reaction-dispersion in PHREEQC model 

The 1D-transport processes in PHREEQC are governed by the Advection-

Reaction-Dispersion (ARD) equation. PHREEQC makes availability for the equation to 

be used for both ground and surface water flow simulations by modeler defined 

parameters (i.e., velocity). Equation 16 is used to simulate the groundwater flow while 

equation 17 is for surface water flow. 
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where v is the average pore water flow velocity (m/d), u is the average stream velocity 

(m/d), x is the distance (m), C is concentration in water (mol/L), DL is the dispersion 



 

22 

coefficient [m
2
/d, *DvD LL  is for groundwater flow, while *DuD LL   is for 

surface water flow, where αL is longitudinal dispersive (m), and D* is the diffusion 

coefficient (m
2
/d)], and q is the concentration in a solid phase (mol/L). The first term on 

the right hand-side of the earlier equations, 
x

C
v



  and 

x

C
u



 represent advection, the 

second term 2

2

x

C
DL




 represents dispersion, and 

t

q




represents the change in concentration 

due to a reaction (e.g., sorption, ion exchange, etc.). Equation 17 was recognized and 

successfully used by a number of researchers (Fried, 1991; Tradiff and Goldstein, 1991) 

to calculate the change of chemicals and substances in the stream flow. 

3.2.2.2 Advection-reaction-dispersion in PHAST model 

The governing equation of flow and transport in the PHAST model includes advection, 

dispersion, and the reactions. The PHAST model also can be used to calculate both 

ground and surface water flows. Groundwater flow can be calculated using equation 18, 

in which the Darcy velocity (v) and porosity (ε) of the media are important parameters 

and defined by the modeler. 
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    (Eq. 18) 

According to Parkhurst et al. (2010) and Parkhurst and Appelo (1999), “where 

h
K

v 


, K is hydraulic conductivity, h is potentiometric head (m); ci is the total 

aqueous concentration of component i (mol/kgw); D is the dispersion-coefficient tensor 

(m
2
/s); NE is the number of heterogeneous equilibrium reactions; 

K

ki ,  is the stoichiometric 
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coefficient of component i in heterogeneous equilibrium reaction e (unitless); 
ec is the 

concentration of solid reactant e (mol/kgw); NK is the number of kinetic reactions; 
K

ki ,
 is 

the stoichiometric coefficient of component i in kinetic reaction k (unitless); Rk is the rate 

of kinetic reaction k (mol kgw
–1

 s
–1

 [moles per kilogram of water per second]); 
ic
  is the 

total aqueous concentration of component i in the source water (mol/kgw); and Nc and is 

the number of chemical components in the system”. 

Substitution of v in equation 18 by h
K



 produces Equation 19, which indicates that K 

and ɛ must be defined by the modeler for groundwater flow simulation. 
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    (Eq. 19) 

In case of surface water flow, the following considerations are made: 1) the ε is 

constantly equal to 1, where the volume of void space is the total volume (Vd/VT = 1). 

This is when the sediment is present in the stream bed but does not affect the stream 

velocity; and 2) the density of water (ρ) is constant. With these assumptions, the ε and ρ 

in equation 19 can be cancelled, and average stream velocity u can be substituted. Thus, 

the equation for surface water flow is written as equation 20: 
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    (Eq. 20) 

Equation 20 is the simplified advection-dispersion-reaction equation, where the first term 

on the right-hand side represents advection, the second term represents dispersion and the 

rest is the change within concentration C due to the reactions and input. 
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3.2.2.3 Transport boundary conditions  

There are two boundary types that can be considered for the transport: 1) constant, 

and 2) flux conditions.  

The constant boundary condition is expressed by equations 21-24. The error 

function, A, for groundwater flow is calculated using equation 23, while equation 24 is 

for surface water flow. 

at x = 0;    0,0 CtC          (Eq. 21) 

at x > 0;     ACCCtxC ii  0
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1
,      (Eq. 22) 
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where x is the distance (m), t is time (s), v is velocity (m/s), αL is longitudinal dispersion 

(m), and R is the retardation that is caused by the media CEC in the case of groundwater 

flow (Eq. 23) and sediment CEC in surface water flow (Eq. 24) (
C

CEC
1 , where CEC is 

expressed in mol/L and C is the concentration in mol/L). 

 The flux boundary condition is shown in equations 25-28. The error function B 

for groundwater flow is expressed in equation 27, while equation 28 is for surface water 

flow. 

Flux boundary condition: 
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at x > 0;    BCCCtxC ii  0
2

1
,      (Eq. 26) 
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The retardation R in equation 33 is caused by the CEC of the transport media for ground 

water flow, while R in equation 34 is caused by CEC in the case of streambed sediment.  
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IV. MODEL DEVELOPMENT 

 

This section describes the model development, including Hg thermodynamic 

properties used for database enhancement and model confirmation. 

 

4.1 Enhanced Model Database Input Method 

In this section, the model database input method and the model language are 

described. The Hg thermodynamic data collected from the literature are also added into 

the model database for all aqueous, ion exchange, and surface species.   

4.1.1 Hg Dissolution and Precipitation  

In order to calculate the aqueous species, PHREEQC requires all master species 

to be defined in the “MASTER SOLUTION_SPECIES” block in the PHREEQC 

database. Hg master species is defined under this block as Hg(OH)2 species. As shown 

below, the alkalinity and the element gram formula weight of Hg are also required in this 

data block. 

 

SOLUTION_MASTER_SPECIES 

Element name Master Species Alkalinity 
Element gram 

formula weight 

Hg Hg(OH)2 0.0 200.59 

 

The chemical reaction, log K, and ΔH of each Hg aqueous species must be defined in 

“SOLUTION_SPECIES” data block. The collected aqueous thermodynamic data can be 

added. However, the reactions must be written with Hg(OH)2 species since it is defined 
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as the master species for the Hg element in the database. The Hg thermodynamic and log 

K data collected from the literature are Hg
2+

 related reactions. However, since the 

Hg(OH)2 is defined as the master species for Hg, the collected thermodynamic data must 

be converted to Hg(OH)2 related reactions and log K prior to adding into the PHREEQC 

database. The example of a conversion is shown next and in equations 29-32. 

The relationship between Hg(OH)2 and Hg
2+

 is: 

Hg(OH)2 + 2H
+
 = Hg

2+
 + 2H2O 

 Log K = 6.19 (Eq. 29) 

and the reaction related to Hg
2+

 is: 

Hg
2+

 + HPO4
3-

 = (HgHPO4)
-
 

            Log K = 9.5 (Quarfort-Dahlman 1975) 

The above reactions (including Log K) can be combined to become a new reaction 

related to Hg(OH)2 (equation 30), as shown next:  

The combined equation is then: 

Hg(OH)2 + 2H
+
 + Hg

2+
 + HPO4

3-
 = Hg

2+
 + 2H2O + (HgHPO4)

-
  

 Log K = 15.69 (Eq. 30) 

However, since “Hg
2+

” appears on both sides of the combined equation (equation 30), it 

can be subtracted from both sides. The final combined reaction (and Log K), which 

relates to Hg(OH)2, is shown in equation 31: 

Hg(OH)2 + 2H
+
 + HPO4

3-
 =  (HgHPO4)

-
 + 2H2O 

 Log K = 15.69 (Eq. 31) 

The Hg aqueous species data related to Hg(OH)2 added into the PHREEQC database, are 

shown in Appendix C. 
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4.1.2 Hg Ion-Exchange  

In the PHREEQC database, the master exchanger X
 
with one negative valence 

number (X
-
), which represents the negative charge of typical soil and sediment, is defined 

under EXCHANGE_MASTER_SPECIES block.  

 

EXCHANGE_MASTER_SPECIES 

Element name Master Species 

X X
-
 

 

The exchange half-reaction must be defined under the EXCHANGE_SPECIES 

block. As it was mentioned earlier, the Hg exchange species data is not available in the 

PHREEQC database, therefore, the Hg exchange species and their exchange coefficients 

obtained from Khan and Alam (2004) were inputted into the PHREEQC database (under 

EXCHANGE_SPECIES block ) and are exemplified in equations 32-34. 

For instance, the exchange equation Hg
2+

/Na
+
 was obtained from Khan and Alam (2004): 

  NaXHgXNaHg 22 2

2  

KHg/Na = 0.04, log (KHg/Na) = -1.39     (Eq. 32) 

One half-reaction for Na
+
 defined in PHREEQC is: 

XNaXNa    

Log K = 0        (Eq. 33) 

Thus the second half-reaction of equation 32 is:  

2

2 2 XHgXHg      

39.1K Log         (Eq. 34) 
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The completed ion exchange between Hg
2+

 and other cations and their exchange 

coefficients are shown in Appendix C.
 
 

4.1.3 Hg Surface Complexation  

Similarly to aqueous and ion exchange species, the master surface species must be 

defined under the SURFACE_MASTER_SPECIES block. The PHREEQC database 

contains the surface species of Fe(OH)3 for weak (Hfo_w) and strong (Hfo_s) sites with 

the hydroxide with ≡Hfo_wOH and ≡Hfo_sOH representing its surface master species. 

The new surface species data collected from the literature are Fe-Oxide (≡Feox), 

Hematite (≡Hem), Quartz (≡Sio), Gibbsite (≡Aloh), and Kaolinite (≡Sial) with their 

hydroxide group representing their master species.  

 

SURFACE_MASTER_SPECIES  

Element name Master Species 

≡Hfo_w ≡Hfo_wOH 

≡Hfo_s ≡Hfo_sOH 

≡Amo ≡Amo_OH 

≡Hem ≡Hem_OH 

≡Sio ≡Sio_OH 

≡Aloh ≡Aloh_OH 

≡Sial ≡Sial_OH 

 

The surface species and log K data can be defined under the SURFACE_SPECIES block.  
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Under the SURFACE block, the surface name, number sites, specific area per gram 

(m
2
/g), and mass (g) of the surface species must be defined. These data were obtained 

from the literature except the surface mass, which can be defined by the modeler. An 

example of the input file for Fe(OH)3 and Quartz surface species that are defined under 

the SURFACE block is shown below.   

 

SURFACE 

Surface Name Number of Surface Site 

(mole) 

 

Surface Area 

(m
2
/g) 

Surface Mass 

(g) 

≡Hfo_w 0.2 600 Modeler defined 

≡Aloh 1.023X10
-4

 4.15 Modeler defined 

 

The completed new surface species data that was added into the PHREEQC database are 

shown in Appendix C. 

 

4.2 Hg Thermodynamic Properties 

4.2.1 Hg Reaction Equilibrium and Solubility Constants 

The Hg speciation in aquatic environments is governed by a number of factors: 

pH, temperature, DO, presence of inorganic and organic ligands, among others. The 

existing Hg database in PHREEQC, which was obtained and validated by a vast number 

of studies (Parkhurst and Appelo, 1999), is shown in Table 2 for Hg reactions and Table 

3 for Hg solubility reactions. 
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Table 2 The reaction equilibrium constants of Hg available in PHREEQC (Parkhurst and 

Appelo, 1999) 

 

Table 3 Hg solubility reaction equilibrium constants available in PHREEQC (Parkhurst 

and Appelo, 1999) 

 

Reactions Log K 

Hg(OH)2 + Cl
-
 + 2H

+
  = HgCl

+
 + 2H2O 12.85 

Hg(OH)2 + 2Cl
-
 + 2H

+
  = HgCl2 + 2H2O 19.22 

Hg(OH)2 + 3Cl
-
 + 2H

+
  = HgCl3

-
 + 2H2O 20.12 

Hg(OH)2 + 4Cl
-
 + 2H

+
  = HgCl4

2-
 + 2H2O 20.53 

Hg(OH)2 + Cl
-
 + H

+
 = HgClOH + H2O 9.31 

Hg(OH)2 + F
-
 + 2H

+
 = HgF

+
 + 2H2O 8.08 

Hg(OH)2 + I
-
 + 2H

+
 = HgI

+
 + 2H2O 18.89 

Hg(OH)2 + 2I
-
 + 2H

+
 = HgI2 + 2H2O 30.10 

Hg(OH)2 + 3I
-
 + 2H

+
 = HgI3

-
 + 2H2O 33.79 

Hg(OH)2 + 4I
-
 + 2H

+
 = HgI4

2-
 + 2H2O 35.78 

Hg(OH)2 + H
+
  = HgOH +  H2O 2.70 

Hg(OH)2 + H2O  = Hg(OH)3
-
 + H

+ 15.00 

Hg(OH)2 + 2HS
-
 = HgS2

2-
 + 2H2O 31.24 

Hg(OH)2 + 2HS
-
 + 2H

+
  = Hg(HS)2 + 2H2O 43.82 

Hg(OH)2 + SO4
2-

 + 2H
+
 = HgSO4 + 2H2O 7.49 

Solubility Reactions Log K ΔH (kJ) 

HgS + 2H2O = Hg(OH)2 + H
+
 + HS

- -45.69 253.76 

HgS + 2H2O = Hg(OH)2 + H
+
 + HS

- -45.09 253.72 

HgO + H2O = Hg(OH)2 -3.64 -38.9 

Hg(OH)2 = Hg(OH)2 -3.49 -0 

HgCl2 + 2H2O = Hg(OH)2 + 2Cl
-
 + 2H

+ -21.26 107.82 
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However, as it was mentioned earlier, the existing Hg databases in PHREEQC are limited 

and thus inadequate to effectively represent all possible Hg speciation that may occur in 

an aqueous system. Therefore, the aim of this literature review was to obtain the 

thermodynamic properties of Hg (speciation, sorption process, etc.). These properties 

were added into the PHREEQC database. Then the model predictions were confirmed by 

simulating and comparing the Hg speciation to experimental reported results that were 

identified in the literature. The comparison between the literature results and those 

estimated by the enhanced database and model produced quite comparable results thus 

confirming the prediction capability of PHREEQC.  

An illustration of the procedure is the case of the experimental work of Gårdfeldt 

et al. (2003), who conducted experiments to study the various mercuric acetate 

complexes in equilibrium at various pH values. The mercuric acetate species and their 

thermodynamic properties from Gårdfeldt et al. (2003) study (Table 4) were added to the 

enhanced PHREEQC database. 

Table 4 Thermodynamic propertied of Hg-Acetate obtained from Gårdfeldt et al. (2003) 

 

The results obtained from Gårdfeldt’s experimental works are shown in Figure 1.   

Mercury species Reactions Log K 

[Hg(CH3COO)]
+ Hg

2+
 + CH3COO

-
 = [Hg(CH3COO)]

+ 4.3 

Hg(CH3COO)2 Hg
2+

 + 2CH3COO
-
 = Hg(CH3COO)2 7.0 

[Hg(CH3COO)3]
- Hg

2+
 + 3CH3COO

-
 = [Hg(CH3COO)3]

- 13.3 

[Hg(CH3COO)3]
2- Hg

2+
 + 4CH3COO

-
 = [Hg(CH3COO)4]

2- 17.1 
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Figure 1 Gårdfeldt et al. (2003) study of mercuric acetate complexes over a wide pH 

 

Gårdfeldt et al. (2001) conducted experimental work to study the complexation of 

MeHg at various pH using phosphate buffer. They reported that the complexation of 

MeHg obtained from their experimental work (Figure 2) was quite consistent with hand 

calculations using the thermodynamic data in Table 5. Consequently, the thermodynamic 

data of Table 5 were also added to enhance the database of the PHREEQC model. 
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Table 5 Hg reaction equilibrium and solubility constants (Gårdfeldt et al., 2001) 

 

 

Reactions Log K References 

CH3Hg
+
 +  HPO4

2-
 = (CH3Hg HPO4)

- 5.0 
Schwarzenbach and 

Schellenberg (1965) 

CH3Hg
+
 + OH

-
 = CH3Hg OH 9.4 

Schwarzenbach and 

Schellenberg (1965) 

2CH3Hg
+
 + OH

-
 = [(CH3Hg)2OH]

+ 2.4 Libich and Robenstein (1973) 

Hg
2+

 + OH
-
 = HgOH

+ 10.6 Dyrssen and Tyrell (1961) 

Hg
2+

 + 2OH
-
 = Hg(OH)2 21.9 Dyrssen and Tyrell (1961) 

Hg
2+

 + 3OH
-
 = (Hg(OH)3)

- 20.9 Garett and Hirschler (1938) 

2Hg
2+

 + OH
-
 = (Hg2OH)

+ 10.7 Ahlberg (1962) 

Hg
2+

 + HPO4
3-

 = (Hg HPO4)
- 9.5 Quarfort-Dahlman (1975) 

3Hg
2+

 + PO4
3-

 + 3OH- = (HgOH)3PO4(s) 21.4 Quarfort-Dahlman (1975) 

Hg
2+

 + 2OH
-
 = Hg(OH)2(s) 25.4 Dyrssen and Tyrell (1961) 

3Hg
2+

 + PO4
3-

 = Hg3(PO4)2(s) 49.4 Gårdfeldt et al. (2003) 

Hg
2+

 + HPO4
2-

 = HgHPO4(s) 13.1 Haitzer et al. (2002) 

Hg
2+

 + H2O =  HgO(s) + 2H
+ -2.45 Hietanen and Hogfeldt (1976) 
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Figure 2 MeHg species as function of pH; Gårdfeldt et al. (2001) 

 

4.2.2 Hg-DOM Reaction Equilibrium Constants 

Hg(II) is generally bound to the acid site of organic matter (i.e., carboxylic acid, 

phenols, ammonium ions, alcohols, and thiols) (Ravichandran, 2004);carboxylic acid and 

phenol groups are the acidic functional groups that contain up to 90% of DOM (dissolved 

organic matter). However, mercury is found to preferentially bind to thiol groups (RS
-
), 

which constitute a small percentage of  DOM compared to oxygen or nitrogen-containing 

functional groups (RO
-
 and RN

-
). The study of Xia et al. (1999) also confirmed that 

Hg(II) preferably binds to RS
-
 groups over RO

-
 in DOM. The relationship between DOM 

and reduced sulfur concentration in DOM (equation 1) was proposed by Dong et al. 

(2010). Thus, concentration of reduced sulfur in DOM can be estimated using equation 

35.  

[Sred] = [DOM] x F1 x F2/W    (Eq. 35) 
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where:  

[Sred] is the concentration of reduced sulfur in DOM 

F1 is fraction of total sulfur content in DOM 

F2 is fraction of reduced sulfur  

W is atomic weight of sulfur 

Ravichandran (2004) reported that the total sulfur content in DOM was found to 

be approximately 1% (wt% of DOM), while reduced sulfur was 50% of total sulfur (wt% 

of total sulfur). However, not all of reduced sulfur is reactive for binding with Hg(II). 

Amirbahman et al. (2002) and Haitzer et al. (2002 and 2003) reported that only a small 

fraction, approximately 2%, of reduced sulfur, was available for binding with Hg(II). 

Moreover, the study of Skyllberg et al. (2006), which used EXAFS, an Extended X-Ray 

Absorption Fine Structure, to study the complexation of Hg(II) in soil organic matter, 

indicated that 20-30% of reduced sulfur is involved in the Hg-Thiol group. Furthermore, 

these studies indicate that around 2-30% of reduced sulfur content in DOM is reactive 

and is available for Hg(II) binding. The logs of stability constants (log K) between Hg 

and RS
-
 were reported in a wide range (log K = 20 – 40), the actual value depending on 

the conditions of the experimental study. The reaction constants of Hg-RS
-
, Hg-RO

-
, and 

Hg-RN
-
 are shown in Table 6. 
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Table 6 Reaction equilibrium constants of Hg and reactive functional groups in DOM 

[thiol group (RS
-
), oxygen- or nitrogen-containing functional group (RO

-
 and RN

-
)] 

Type of DOM Reaction Log K 

DOM isolates from Florida Everglades (Haitzer et 

al., 2003) 

Hg
2+

 + RS
-
 + RX

-
 = Hg(RS)(RX) 

RXH = RS
-
 + H

+
 (X =O, N, S) 

SRH = RS
-
 + H

+
 

28.7±0.1 

-6.3 

-10.3 

DOM from California natural waters (Black et al., 

2007) 

 

Hg
2+

 + RS
-
 = Hg(RS)

+
 

SRH = RS
-
 + H

+
 

29.9 – 33.5 

-9.96 

DOM from Texas estuarine (Han and Gill, 2005) 

Hg
2+

 + RS
-
 = Hg(RS)

+
 

SRH = RS
-
 + H

+
 

26.1 – 26.9 

-10 

DOM from fresh and sea waters (Lamborg et al., 

2003) 

Hg
2+

 + RS
-
 = Hg(RS)

+
 21 - 24 

DOM isolates from Florida Everglades (Haitzer et 

al., 2002) 

Hg
2+

 + RS
-
 = Hg(RS)

+
 

RSH = RS
-
 + H

+
 

28.5 

-10 

Peats and DOM from Florida Everglades (Drexel et 

al., 2002) 

Hg
2+

 + RS
-
 = Hg(RS)

+
 

RSH = RS
-
 + H

+
 

25.8 – 27.2 

-10 

DOM isolates from Florida Everglades (Benoit et 

al., 2001) 

Hg
2+

 + RS
-
 = Hg(RS)

+
 

RSH = RS
-
 + H

+
 

20.6 – 23.8 

-10 

 

4.2.3 Hg Ion Exchange  

Ion exchange is one of the important mechanisms that play a major role in the 

transport of Hg in aquatic environments. The difference between sorption and exchange 

mechanisms is that “sorption” indicates that the chemical is taken up into the solid, while 

“exchange” involves replacement of one chemical for another one at the solid surface 

(Appelo and Postma, 2010). The ion exchange for all solid surfaces in aquatic 
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environments is related to the soil Cation Exchange Capacity (CEC) and ion exchange 

coefficients. 

4.2.3.1 CEC of common soil and sediment materials 

CEC indicates the amount of cations that can be attached to the negative charge 

sites of soil. CEC is commonly expressed as milli-equivalent of hydrogen (H
+
) per 100 g 

of dry soil or meq/100gsoil. CEC values of common soils and sediment materials reported 

by several researchers (Appelo and Postma, 2005; Bergaya and Vayer, 1997) are shown 

in Table 7. 

Table 7 CEC of common soil and sediment materials (Appelo and Postma, 2005; Bergaya 

and Vayer, 1997) 

Soil and Sediment Materials 
CEC 

meq/kg 

Allophane ~700 

Bentonite 1000-1200 

Glauconite 50-400 

Goethite ~800 

Halloysite 50-100 

Hematite ~700 

Illite 200-500 

Kaolinite 30-150 

Montmorillonite 800-1200 

Quartz 6-53 

Shale 100-410 

Vermiculite 1000-2000 
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4.2.3.2 Hg(II) ion exchange coefficients 

The ion exchange coefficient is a coefficient that defines the amount of one 

chemical that replaces another chemical on the sediment’s exchange site. For the ion 

exchange reaction of Hg(II) for any cation, I
i
, can be written as equation 36, while its ion 

exchange coefficient can be obtained from the law of mass action as shown in equation 

37. 

Reaction:   i
iii IXHgXIHg 1

22
112

2
1    (Eq. 36) 

Ion exchange coefficient: 
2

11

1
2

1

][][

][][
2








HgXI

IXHg
K

i

i

i

i

IHg    (Eq. 37) 

where X is the exchange sites, and the square brackets in the equation represent the 

activities. The exchange coefficients are commonly used and their values depend upon 

the type of exchanger present in the soil. 

The PHREEQC database contains ion exchange coefficients of various elements 

that are related to Na
+
. This is because Na

+
 is a common ion that is contained in soils. 

The existing PHREEQC database is shown in Table 8; M in Table 8 represents any 

cation, while the numbers in parentheses are the given ranges that present many 

measurements from different soils and for different clay minerals (Appelo and Postma, 

2005; Bruggenwert and Kamphorst, 1979; Parkhurst and Appelo, 1999). 

Although, many ion exchange coefficients that relate to Na are provided in the 

PHREEQC database, there is no data available for Hg.  
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Khan and Alam (2004) reported the ion exchange coefficients of Hg(II) for 

various ions as shown in Table 9. The ion exchange coefficients provided in Table 9 were 

then added and used in the PHREEQC database by converting them in values relative to 

Na
+
. The exchange coefficients between other pairs of cations can be obtained by 

combining two reactions.  

Table 8 PHREEQC existing database of ion exchange coefficients relative to Na
+
 

(Appelo and Postma, 2005; Bruggenwert and Kamphorst, 1979; Parkhurst and Appelo, 

1999) 

Ions 

Ion exchange 

coefficients 
Ions 

Ion exchange 

coefficients 

KNa/M KNa/M 

Li
+ 1.2 (0.95-1.2) Mn

3+ 0.55 

K
+ 0.2 (0.15-0.25) Fe

2+ 0.6 

NH4
+ 0.25 (0.2-0.3) Co

2+ 0.6 

Rb
+ 0.1 Ni

2+ 0.5 

Cs
+ 0.08 Cu

2+ 0.5 

Mg
2+ 0.5 (0.4-0.6) Zn

2+ 0.4 (0.3-0.6) 

Ca
2+ 0.4 (0.3-0.6) Cd

2+ 0.4 (0.3-0.6) 

Sr
2+ 0.35 (0.3-0.6) Pb

2+ 0.3 

Ba
2+ 0.35 (0.2-0.5) Al

2+ 0.7 (0.5-0.9) 

 

 

 



 

41 

Table 9 Ion exchange coefficients for various ions related to Hg(II) (Khan and Alam, 

2004) 

Ions 
Ion exchange coefficients 

KHg/M 

Na
+ 0.04 

K
+ 0.03 

Mg
2+ 0.02 

Co
2+ 0.04 

Ni
2+ 0.02 

Cu
2+ 0.03 

Mn
2+ 0.03 

Zn
2+ 0.02 

Pb
2+ 0.07 

Al
3+ 0.01 

Fe
3+ 0.05 

 

4.2.4 Hg Surface Complexation  

4.2.4.1 Surface complexation on iron oxide minerals 

PHREEQC uses the surface complexation model that was proposed by Dzombak 

and Morel (1990) to calculate the sorption of metals onto the surface of minerals. 

Dzombak and Morel (1990) have obtained the database for surface complexation on 

hydrous ferric oxide or ferrihydrite [Fe(OH)3] (Dzombak and Morel, 1990; Schlüter, 

1995; Schlüter and Gäth 1997). Dzombak and Morel’s complexation reaction model was 

defined for two sites on ferrihydrite, a weak site (≡Hfo_sOH) and a strong site 
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(≡Hfo_wOH). The equilibrium constants for surface complexation of Hg are shown in 

Table 10 (Dzombak and Morel, 1990; Yasunaga and Ikeda, 1986; Hayes and Leckie, 

1986). The surface complexation for other iron oxide minerals (Goethite, Amorphous Fe-

Oxide, and Hematite) can also be calculated using Dzombak and Morel’s model. 

Nevertheless, the sorption capability of the minerals mainly depends on their surface area 

properties (Arias et al., 2004; Miretzky et al., 2005; Martell and Smith, 2001) (Table 11). 

Table 10 Dzombak and Morel (1990)’s sorption-reaction constant database for Hg 

Reactions Log K 

≡Hfo_sOH + Hg(OH)2 + H
+
 = ≡Hfo_sOHg

+
 + 2H2O 13.95 

≡Hfo_wOH + Hg(OH)2 + H
+
 = ≡Hfo_wOHg

+
 + 2H2O 12.64 

 

Table 11 Surface property of iron oxide minerals (Arias et al., 2004; Miretzky et al., 

2005; Martell and Smith, 2001) 

Iron Oxides 
Weak Sites 

(mol/mol 

Fe) 

Strong 

Sites 

(mol/mol 

Fe) 

Surface 

Area 

(m
2
/g) 

Point of 

Zero 

Charge pH 

Ferrihydrite 0.2 0.005 600 8.11 

Amorphous Fe-

Oxide 
0.075 0.0018 222.7 7.23 

Goethite 0.02 0.0005 63.1 8.82 

Hematite 0.003 0.00009 10.9 8.5 

 

4.2.4.2 Surface complexation on quartz and gibbsite 

Sarkar et al. (1999) studied and conducted the experiments on the adsorption of 

Hg(II) on the surface of quartz (SiO2) and gibbsite [Al(OH)3], using the solid properties 

(Table 12) documented in various studies (Elliott and Huang, 1981; Meng and Letterman, 
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1993; Riese, 1982; Singh and Mattigod, 1992). The surface complexation and the 

intrinsic equilibrium constants (log Kint) for quartz (≡Sio) and gibbsite (≡Aloh) used in 

this study are shown in Tables 13 and 14 respectively.  

Table 12 Quartz and gibbsite properties used in Sarkar et al. (1999) 

Parameter Quartz Gibbsite 

Surface area, m
2
/g 4.15 3.5 

Site density, n/m
2
 4.5 8.0 

Total surface sites (x 10
-4

 mol/L) 1.023 1.534 

 

Table 13 The surface complexation and the intrinsic equilibrium constants (log Kint) of 

Hg(II) adsorption on quartz (≡Sio) (Sarkar et al., 1999) 

Parameter Log Kint 

≡Sio_OH + H
+
 = ≡Sio_OH2

+
 2.77 

≡Sio_OH = ≡Sio_O
-
 + H

+
 -6.77 

≡Sio_OH + Na
+
 = ≡Sio_Na

+
 + H

+
 -6.21 

≡Sio_OH + Hg
2+

 + H2O = ≡Sio_OHgOH + 2H
+
 -2.19 

≡Sio_OH + Hg
2+

 + 2H2O = ≡Sio_OHg(OH)2
-
 + 3H

+
 -7.75 

≡Sio_OH + Hg
2+

 + Cl
-
 + H2O = ≡Sio_OHgOHCl

-
 + 2H

+
 2.14 

≡Sio_OH + Hg
2+

 + PO4
3-

 + H2O = ≡Sio_OPO3Hg(OH)2
2-

 

+ H
+
 

11.61 
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Table 14 The surface complexation and the intrinsic equilibrium constants (log Kint) of 

Hg(II) adsorption on gibbsite (≡Aloh) (Sarkar et al., 1999) 

Parameter Log Kint 

≡Aloh_OH + H
+
 = ≡Aloh_OH2

+
 4.7 

≡Aloh_OH = ≡ Aloh _O
-
 + H

+
 -8.7 

≡ Aloh _OH + Na
+
 = ≡ Aloh _Na

+
 + H

+
 -7.0 

≡ Aloh _OH + Hg
2+

 + H2O = ≡ Aloh _OHgOH + 2H
+
 -2.6 

≡ Aloh _OH + Hg
2+

 + 2H2O = ≡ Aloh _OHg(OH)2
-
 + 3H

+
 -10.2 

≡ Aloh _OH + Hg
2+

 + Cl
-
 + H2O = ≡ Aloh _OHgOHCl

-
 + 2H

+
 -0.5 

≡ Aloh _OH + Hg
2+

 + PO4
3-

 + H2O = ≡ Aloh 

_OPO3Hg(OH)2
2-

 + H
+
 

12.5 

 

4.2.4.3 Surface complexation on kaolinite 

Zachara et al. (1988) studied the chromate adsorption by kaolinite 

[Al2Si2O5(OH)4] and proposed that the ideal structure of kaolinite consists of the 

ionization of quartz (≡Sio) and gibbsite (≡Aloh), which controls the surface charge. The 

result of their study concluded that the total site density (ns) of kaolinite consists of equal 

contribution of ≡Sio and ≡Aloh sites (i.e., ns = [≡Sio] + [≡Aloh], and [≡Sio] = [≡Aloh]). 

Sarkar et al. (2000) applied this principle in their model study of adsorption of Hg(II) by 

kaolinite, then verified the model results with experimental results. The kaolinite solid 

properties used in Sarkar et al. (2000) study are shown in Table 15 (Riese, 1982).  
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Table 15 Kaolinite properties used in Sarkar et al. (2000) 

Parameter Kaolinite 

Surface area, m
2
/g 12.3 

Site density, n/m
2
 6.0 

Total surface sites (x 10
-4

 mol/L) 2.02 

 

The modeling of adsorption of Hg(II) by kaolinite was conducted, using the surface 

complexation and the intrinsic equilibrium constants (log Kint) of Hg(II) adsorption onto 

quartz and gibbsite (see Tables 13 and 14). Sarkar et al. (2000)’s modeling and 

experimental results were comparable. This supports the Zachara et al. (1988)’s 

conclusion on the ideal structure of kaolinite. Zhu et al. (2012) studied the transport and 

interactions of kaolinite and mercury in saturated sand media, using the ideal kaolinite 

structure proposed by Zachara et al. (1988) and the Hg sorption thermodynamic data on 

quartz and gibbsite proposed by Sarkar et al. (2000) studies. Their model and 

experimental results were in good agreement, which confirmed Zachara et al. (1988) and 

Sarkar et al. (2000) studies.  

4.2.4.4 Hg(II) surface complexation isotherms  

Sorption isotherm is the relation between sorbed and dissolved solute 

concentration at a fixed temperature. The Langmuir and the Freundlich isotherms, which 

are shown in equations 38 and 39, are often used to describe the relation.   

Langmuir Isotherm;   

CK1

CSK
S

L

mL


      (Eq. 38) 
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Freundlich Isotherm;  
n

F CKS       (Eq. 39) 

where: 

S = the amount of solute retained per unit weight of the adsorbent (mmol/kg) 

C = the equilibrium concentration of the solute remaining in the solution (mmol) 

KL = constant related to the energy of adsorption (L/mmol) 

Sm = the maximum adsorption capacity of the sample (mmol/g) 

KF and n = adjustable coefficients  

The sorption with Freundlich equation extends infinitely as concentrations increase, 

which is not realistic since a limited number of sorption sites are expected. The sorption 

with the Langmuir equation shows that the sorbed concentration S increases linearly with 

solute concentration C, if C << KL. However, when the concentration is very high, C >> 

KL, then the surface becomes saturated and S = Smax, which indicates the limitation of the 

sorption site.  

Cruz-Guzman et al. (2003) studied the sorption isotherm of Hg(II) on Ferrihydrite 

[Ferrih], Humic acid (HA) and Montmorillonite (SW). The mixtures (binary and ternary 

sorbents) between the sorbents were also performed to test their Hg(II) sorption 

capabilities. For the single model sorbent, the Hg(II) sorption capabilities are following 

the sequence of HA > Fe(OH)3 > SW. The sorption isotherms of Hg(II) on all model 

sorbents (single, binary, and ternary sorbents) showed a strong Langmuir-character with 

R
2
 > 0.98 (Figures 3 and 4). The isotherms indicated a limited number of sorption sites 

exist and it became more difficult for the sorbing species to find a vacant site available 

when more sites in the sorbent were occupied. 
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Figure 3 Hg(II) sorption isotherm on single model sorbent (Cruz-Guzman et al., 2003) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4 Hg(II) sorption isotherms on binary (a), (b) and (c) and ternary (d) model 

sorbents (Cruz-Guzman et al., 2003) 
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The characteristic of the sorbents used in Cruz-Guzman et al. (2003) study and the 

Langmuir isotherm results for Hg(II) sorption on all the model sorbents are shown in 

Table 16.  

Table 16 The characteristic of the model sorbents and Langmuir Isotherm for Hg(II) 

sorptions Cruz-Guzman et al. (2003) 

 

Model sorbents 

Sorbent Composition 

(%) 

Langmuir Parameters for 

Hg(II) sorption 

SW Ferrih HA 
Sm 

mmol/kg 

KL 

L/mmol 
R

2 

Single model 

sorbents 

SW 100 0 0 319 4 0.99 

Ferrih 0 100 0 536 7 0.99 

HA 0 0 100 2750 23 0.99 

Binary model 

sorbents 

SW-Ferrih0 100 0 0 331 2 0.96 

SW-Ferrih8 92.7 7.3 0 275 2 0.95 

SW-Ferrih16 86.3 13.7 0 246 4 0.99 

SW-HA0 100 0 0 273 3 0.96 

SW-HA4 95.7 0 4.3 369 13 0.99 

SW-HA8 93.3 0 6.7 454 19 0.98 

Ferrih-HA0 0 100 0 490 11 0.97 

Ferrih-HA4 0 96.4 3.7 376 11 0.98 

Ferrih-HA8 0 93.1 6.9 459 13 0.97 

Ternary model 

sorbents 

SW-Ferrih-HA0 85.2 14.8 0 462 2 0.82 

SW-Ferrih-HA4 82.5 14.6 2.9 525 3 0.99 

SW-Ferrih-HA8 81.0 13.5 5.5 474 9 0.98 
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Liang et al. (2013) studied the sorption of Hg(II) on Goethite, Hydrous 

Manganese Oxides, and Birnessite in freshwater (salinity = 0‰) and marine water 

(salinity = 33‰). This was in order to study the effect of Cl
-
 on the Hg(II) sorption 

isotherms. They found that the sorption isotherms can be well described by Langmuir 

isotherms as shown in Tables 17 (freshwater) and 18 (marine water). 

Table 17 Langmuir parameters for Hg(II) sorption isotherm on Goethite, Hydrous 

Manganese Oxides, and Birnessite in freshwater (0‰ salinity, Liang et al., 2013) 

 

Table 18 Langmuir parameters for Hg(II) sorption isotherm on Goethite, Hydrous 

Manganese Oxides, and Birnessite in marine water (33‰ salinity, Liang et al., 2013) 

 

Liang et al. (2013) also found that the Langmuir isotherm parameters Sm and KL were 

significantly higher in freshwater (Table 17) compared to marine water (Table 18). This 

indicated that the increase of salinity inhibited adsorption of Hg(II) on Goethite,  Hydrous 

Sorbents 

Langmuir Parameters 

Sm 
mmol/mol Fe or Mn 

KL 

L/mmol 
R

2 

Goethite 1.4 0.36 0.92 

Hydrous Manganese Oxides 5.9 2.65 0.98 

Birnessite 0.4 9.46 0.97 

Sorbents 
Langmuir Parameters 

Sm 
mmol/mol Fe or Mn 

KL 

L/mmol 
R

2 

Goethite 0.013 0.047 0.99 

Hydrous Manganese Oxides 0.007 0.045 0.99 

Birnessite 0.006 0.071 0.99 



 

50 

Manganese Oxides, and Birnessite. This is because the high reaction constant between 

Hg and Cl leads to high formation of a stable, non-sorbing aqueous HgCl2 complex in the 

solution, which limits the amount of free Hg(II) available to sorb.    

4.2.4.5 Hg(II) surface complexation kinetic 

Yin et al. (1997) studied the kinetics of Hg(II) adsorption on different soils which 

have different characteristic as shown in Table 19. 

Table 19 Soil characteristics in Yin et al. (1997) 

soil no soil name % sand % silt % clay pH 
OC 

(g/kg) 

surface 

area 

(m
2
/kg) 

1 
Freehold sandy 

loam 
92 2 6 5.22 1.2 2040 

2 
Sussafras sandy 

loam 
45 37 18 5.78 3.5 5310 

3 
Dunellen sandy 

loam 
56 30 14 5.57 11 5210 

4 
Rockaway stony 

loam 
54 30 16 4.69 28 8620 

 

The kinetic sorption of Hg(II) on the soils can be described by the first order kinetic 

equation (equation 40) 

          (Eq. 40) 

where:  

dC/dt is the reaction rate (µg/L min), 

km is a mass transfer coefficient (min
-1

),  

Ct is Hg(II) concentration (µg/L),  

St is the sorbed concentration (µg/g soil), and  

kd is the distribution coefficient (L/g)  

)
k

S
 - (Ck-  

dt

dC

d

t
tm
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The kinetic sorption parameters kd and km for each soil obtained from the Yin et al. 

(1997) study are shown in Table 20. 

Table 20 The kinetic sorption parameters of Hg(II) on different soils (Yin et al., 1997) 

soil no soil name km (min
-1

) kd (L/g) 

1 Freehold sandy loam 6.93E-05 0.033 

2 Sussafras sandy loam 7.40E-05 0.179 

3 Dunellen sandy loam 9.25E-05 0.822 

4 Rockaway stony loam 1.07E-04 2.100 

 

Krabbenhoft et al. (2007) conducted experiments on the Hg and MeHg kinetic 

adsorption on the Floridan aquifer bedrocks, for both aerobic and anaerobic conditions. 

The study aimed to investigate the possible changes to total Hg and MeHg concentrations 

in the Upper Floridan aquifer during operation of an ASR project. The kinetic 

experimental data for the first-order kinetic reaction (equation 41) was obtained. The 

kinetic parameters of Hg and MeHg sorption on Florida bedrock are shown in Table 21.  

tkS
dt

dS
         (Eq. 41) 

where: 

St is sorption at time t (ng of Hg/kg of bedrock),  

k is the sorption rate constant (day
-1

) 
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Table 21 Sorption kinetic parameters for the Hg and MeHg on the Floridan aquifer 

bedrocks (Krabbenhoft et al., 2007) 

Condition 

 

Hg MeHg 

k (day
-1

) k (day
-1

) 

Aerobic 0.039 0.069 

Anaerobic 0.061 0.070 

 

4.2.4.6 Hg(II) and Everglades peat complexation 

Drexel et al. (2002) studied the Hg(II) sorption of two Everglades peats collected 

at different locations in the Everglades: Water Conservation Area 2A (WCA2A) and 

Conservation Area 2B (WCA 2B). The Hg(II) sorption isotherms showed the competition 

for Hg(II) between peat and DOM released from peat. DOM and the Everglades peat 

consist of two sorption sites: a weak site and a strong site. The binding constants for 

weak and strong sites of both peat and DOM are shown in Table 22. 

Table 22 Equilibrium binding constants (Drexel et al., 2002) 

Reactions WCA 2A WCA 2B 

Single site   

Kpeat 10
12.0±0.1 10

11.6±0.1 

Kdom 10
12.8±0.1 10

9.0±2.6 

Double site   

Kpeat, s 10
22.0±0.1 10

21.8±0.1 

Kpeat, w 10
11.8±0.1 10

11.5±0.1 

Kdom, s 10
23.2±0.1 10

22.8±0.1 

Kdom, w 10
7.3±4.5 10

8.7±3.0 
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The Kd of Hg(II) in the Everglades peat reported by Drexel et al. (2002) are 

between 10
4.1

 to 10
5.7

 L/kg depending on the Hg(II) concentration. These Kd values are 

similar to the values that were reported by Hurley et al. (1998). 

 

4.3 Data and Site Study Selections  

4.3.1 Data Selections 

The data used in this study were obtained from many sources including literature, 

technical reports of specific sites, and database websites (e.g., OREIS, DBHYDRO, 

SFWMD, etc.). 

Data from selected research contributors were used to confirm the model 

estimation capability for Hg. In order to confirm the model capability, the Hg 

experimental conditions obtained from the literature were set for the model. Then the 

model results were verified by the results from the literature. The model confirmation 

using the literature data was made for Hg-species, ion-exchange, and surface 

complexation processes. 

Data from technical reports of the specific sites and related websites, including 

site geology, water quality data, flow characteristics, etc., were used for 2 purposes: 1) 

model confirmation 2) model application. The model confirmations are explained in 

sections 4.6 and 4.7. The model application for Hg geochemical and transport processes 

are documented in Chapter 6.   

4.3.2 Site Selections 

In this study, two test-beds, Oak Ridge Reservation (ORR) at Oak Ridge, TN, and 

South Florida Region, FL, were selected for the development and evaluation of Hg 
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geochemical processes, and also for the application in fate and transport of the enhanced 

model.  

ORR, Oak Ridge, TN consists of three large industrial production facilities 

constructed as part of the World War II-era Manhattan Project: the Oak Ridge National 

Laboratory (formerly known as the X-10 Site), K-25 Site, and the Y-12 National Security 

Complex or Y-12 Plant. The accidental spill and discharge of Hg to the surroundings of 

Y-12 plant was reported during the Y-12 operation time, 1950-1963 (Brooks and 

Southworth, 2011). Studies have also shown that Hg accumulated in the soil, rock, and 

groundwater of the site consequentially became sources of contamination to nearby rivers 

and creeks, such as the East Fork Poplar Creek (EFPC) located downstream from the Y-

12 plant (Figure 5). Many cleanups have been attempted for ORR sites. Y-12 is divided 

into the Bear Creek Valley Watershed and the Upper East Fork Poplar Creek (UEFPC) 

Watershed (Figure 5). Later on as part of this study, applications of the enhanced model 

of this research to understand the transport of Hg were made for Bear Creek Valley and 

EFPC within the Y-12 complex area. 
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Figure 5 Oak Ridge Reservation Map (modified after www.esd.ornl.gov) 

The South Florida region (Figure 6) includes the Florida aquifer and Everglades 

National Park (ENP). ENP is a unique wetland environment with a specific ecosystem 

and wildlife that has been reported to have contamination of Hg. The high Hg levels are 

found in wildlife and especially in aquatic animals (e.g., fish, shell, etc.). Those findings 

have raised the concern of many researchers to investigate the Hg behavior in attempts to 

control the sources and implement cleanup. The unique water environment of ENP has 
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water with high dissolved organic carbon (DOC) that also covers a wide range of salinity 

from oceanic to freshwater, which offers a special opportunity to study the Hg behavior 

under the effect of those main variables. The model was first tested for its capability to 

simulate major ions using data from the Florida aquifer. This test evaluated the model’s 

ability to estimate typical ions, such as Ca, Mg, Na, K and SO4, at different salinity levels 

(section 4.6) or ionic strengths. An encouraging confirmation would justify using the 

model to calculate the Hg-species distribution of ENP water as a function of salinity. 

Second, the model with its enhanced thermodynamic database was used to investigate the 

fate and transport of Hg in ENP area as a function of DOC, peat and salinity. 

 

Figure 6 Everglades National Park (ENP) 

The two test-beds were chosen because of the high concern of Hg contamination 

at the sites; another reason was that because of the difference in geology, water 

composition, and flow characteristics between these two sites, their evaluation would 

FL
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provide a better insight into the Hg behavior in a range of environmental condition. The 

major differences of the two sites are described below. 

1. ENP surface water sediment is classified as the peat soil type, which 

consists up to 90% of DOC. Drexel et al. (2002), Watanabe et al. (2012) and Evans et al. 

(2005) showed that peat releases vast amounts of DOC in the water column, resulting in 

high DOC concentration in ENP’s surface water. DOC content in the peat sediment can 

retard the Hg from its transport while DOC in the water can form with Hg and move with 

the water. Thus, the DOC is one of the important factors that play an important role on 

fate and transport of Hg at this site. However, the studies (Hill et al., 2001; Depledge, 

M.H. 1999; Loar et al. 2011; Stewart et al., 2011) showed that the major sediment of 

ORR surface water, for example, sediment of EFPC, are sand, rock and gravel which 

consist of natural minerals, such as, FeO and Fe(OH)3. These minerals can complex with 

Hg and retard it from its transport. The typical EFPC surface water consists of various 

chemical compositions (e.g. Ca, Mg, Zn, Pb) however, the concentration of DOC is 

negligible (Loar et al. 2011; Southworth et al. 1995 and 1999) and was not considered for 

this site.  

2. According to contaminant transport equation or Advection- Reaction-

Dispersion (ARD) equation, 
t

q
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- , which the change of Hg 

concentration with time is a function of advection and dispersion transports and reactions. 

For these two selected sites, the physical parameters controlling the transport of Hg are 

significantly different. ENP surface water velocity (~777 m/d) and dispersion coefficient 

(~4660 m
2
/d) reported by Harvey et al.(2002 and 2005) and Leonard et al. (2006) are 
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very low compared to those for EFPC surface water, velocity is ~12,960 m/d and 

dispersion coefficient is ~77,000 m
2
/d (Vasquez, 2008; Loar et al., 2011). Thus, the 

evaluation of Hg transport of these two sites will help to better understand the Hg 

behavior and identify the physical parameters influenced its transport. 

3. Groundwater settings and qualities of the both sites are different. 

Although, groundwater bedrock of the both sites mostly consist of limestone, however, 

the bedrock of ORR groundwater also consist of shale, kaolinite, gibbsite and Fe(OH)3. 

The last three minerals have abilities to complex with Hg resulting in retardation of Hg 

from its transport. The retardation of Hg by limestone is not studied in this dissertation. 

The analysis of ORR groundwater qualities showed significantly different from those for 

ENP. ORR groundwater qualities at different wells showed variation in pH value (Elvado 

Environmental LLC, 2009 and 2011), while ENP groundwater qualities showed variation 

in salinity (Blanco et al., 2013; Price et al., 2003; Walton 2007). Thus, the effects of pH 

and salinity on Hg transformation are investigated. This helps to understand the chemical 

processes influenced Hg fate and transport at different water conditions. 

 

4.4 Model Confirmation in Batch Mode – Lab Scale 

This section presents the tests of the model capability to simulate speciation, 

dissolution and precipitation, ion-exchange, surface complexation, and 1-D transport 

simulations. The model prediction was confirmed with both literature and field data for 

Hg and other species. The model capability tests were mostly done using data from the 

literature, for no field data is available for Hg fate as function of speciation, ion-exchange 

and surface complexation. However, field data were available to test the ability of the 



 

59 

enhanced model to predict major ions such as Ca, Mg, Na, Cl, and SO4, which are usually 

present in aqueous environments. 

4.4.1 Testing Scenario 1: Hg-CH3COOH (1 nmole: 0.33 mmole) 

Complexation 

The Hg speciation prediction capability of PHREEQC with the enhanced database 

was satisfactorily compared with the experimental study of Gårdfeldt et al. (2003), which 

conducted experiments to define complexation of mercuric acetate at various pH values. 

Testing was done by simulating in PHREEQC the experimental conditions that Gårdfeldt 

et al. (2003) used in their study. The Gårdfeldt et al. (2003) study was conducted for 3 

scenarios. The water conditions used in scenario 1 are shown in Table 23.   

Table 23 Scenario 1 water condition in the Gårdfeldt et al. (2003) study used for model 

confirmation 

Parameter Unit Value 

Hg(II) nmol 1.0 

Acetic acid (CH3COOH) mmol 0.33 

NaOH mole (to adjust pH) 

Temperature  C 20 

 

The comparison between the results from Gårdfeldt et al. (2003) and PHREEQC 

prediction using the enhanced database is shown in Figure 7. 
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(a) 

 

(b) 

Figure 7 Model speciation prediction capability testing; scenario 1 (Hg : CH3COOH = 1 

nmol : 0.33 mmol) result obtained from Gårdfeldt et al. (2003) (a) and enhanced 

PHREEQC model (b) 

PHREEQC matches well the results of Gårdfeldt et al. (2003); the prediction showed 

Hg
2+

 to be dominant at pH=1 before a sharp decrease between pH 1-4. Hg(OH)2 

increased sharply between pH 2-5 and reached its maximum, being dominant at pH 6-12, 

while Hg(CH3COO)
-
 peaks at pH 3. 

4.4.2 Testing Scenario 2: Hg-CH3COOH (1 nmole: 3.3 mmole) 

Complexation 

The water conditions used for the scenario 2 in the Gårdfeldt et al. (2003) study 

are shown in Table 24. 

Table 24 Scenario 2: water condition in the Gårdfeldt et al. (2003) study used for model 

confirmation 

Parameter Unit Value 

Hg(II) nmol 1.0 

Acetic acid 

(CH3COOH) 
mmol 3.3 

NaOH mole (to adjust pH) 

Temperature  C 20 
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The comparison between the results of the Hg-CH3COOH complexation, that is scenario 

2 of the Gårdfeldt et al. (2003) experiments and the enhanced PHREEQC prediction 

results is shown in Figure 8. 

 

(a) 

 

(b) 

Figure 8 Model speciation prediction capability testing; the scenario 2 (Hg : CH3COOH = 

1 nmol : 3.3 mmol) result obtained from Gårdfeldt et al. (2003) (a) and enhanced 

PHREEQC model (b). 

PHREEQC predictions trace well Gårdfeldt et al. (2003) experimental results of the Hg-

CH3COOH species distribution for all pH values. A decrease in Hg
2+

 is predicted 

between pH 1-3, while Hg(CH3COO)
+
 and Hg(CH3COO)3

-
 showed their peak 

concentrations at pH 2.8 and 3.2, respectively. Hg(CH3COO)4
2-

 was the dominant species 

between pH 4-6 with a sharp decrease at higher pH values. An increase in the 

concentration of Hg(OH)2 species occurred between pH 6-7, which then peaked at pH 8, 

being the only the dominant species between pH 8-12. 
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4.4.3 Testing Scenario 3: Hg-CH3COOH (1 nmole: 33 mmole) 

Complexation 

The water conditions used for scenario 3 are shown in Table 25.  

Table 25 Scenario 3: water condition in the Gårdfeldt et al. (2003) study used for model 

confirmation 

Parameter Unit Value 

Hg(II) nmol 1.0 

Acetic acid 

(CH3COOH) 
mmol 33 

NaOH mole (to adjust pH) 

Temperature  C 20 

 

The comparison between PHREEQC predictions of Hg-CH3COOH complexation, that is 

scenario 3 in the Gårdfeldt et al. (2003) study is shown in Figure 9. 

 

(a) 

 

(b) 

Figure 9 Model speciation prediction capability testing; the scenario 2 (Hg : CH3COOH = 

1 nmol : 33 mmol) result obtained from Gårdfeldt et al. (2003) (a) and enhanced 

PHREEQC model (b) 

Figures 9 (a) and (b) respectively depict the results of Gårdfeldt et al., 2003 (a) and the 

prediction with the enhanced PHREEQC model (b); the predictions are quite comparable. 

Hg
2+

 was estimated to be dominant at pH 1 before a sharp decrease in concentration at 
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pH 2. The Hg(CH3COO)
+
 and Hg(CH3COO)3

-
 peak concentrations shifted to lower pH 

values compared to the previous scenarios. Increase in CH3COOH in the solution 

promoted the complexation of Hg(CH3COO)4
2-

, as dominant in concentration between 

pH 3-8, replacing Hg(OH)2 as the dominant species in comparison to previous scenarios. 

The Hg(OH)2 species dominated between pH 9-12. 

4.4.4 Testing Scenario 4: MeHg complexation 

The testing of PHREEQC for its capability to calculate the complexation of 

MeHg at various pH values was conducted with the enhanced PHREEQC model by 

comparing it to Gårdfeldt et al. (2001) experimental conditions as shown in Table 26.    

Table 26 Scenario 4: water condition in Gårdfeldt et al. (2001) study used for model 

validation for MeHg complexation 

Parameter Unit Value 

DI Water L 1.0 

CH3HgCl ppb 25 

PO4
3- mole (to adjust pH) 

Temperature  C 20 

 

The results obtained from both the Gårdfeldt et al. (2001) experiments study and the 

enhanced PHREEQC model are shown in Figure 10 side by side. 
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(a) 

 

(b) 

Figure 10 Model speciation prediction capability testing; the scenario 4 MeHg 

complexation result obtained from Gårdfeldt et al. (2001) (a) and enhanced PHREEQC 

model (b) 

Figure 10 shows that the enhanced PHREEQC model reproduces well the MeHg 

complexation and its speciation distribution for all pH values at the experimental 

conditions of Gårdfeldt et al. (2001). The CH3Hg
+ 

shows dominant between pH 1-2, then 

has a sharp decrease in its concentration between pH 2-5 and goes to very low 

concentrations beyond pH 6. The dominated species at pH 4-8 was CH3HgHPO4
-
, while 

CH3HgOH dominates within pH 8-12.  

 

4.5 Process Confirmation in Batch Mode – Lab Scale 

4.5.1 Testing Scenario 1: Hg(II) Surface Complexation on Fe(OH)3  

The enhanced PHREEQC model surface complexation calculation capability for 

the Hg(II) surface complexation on Fe(OH)3 was tested in reference to the experiments 

by Cruz-Guzman et al. (2003) study (Table 27). 
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Table 27 Scenario 1: sorption experimental condition in the Cruz-Guzman et al. (2003) 

study used for model confirmation for Hg(II) surface complexation on Fe(OH)3 

Parameter Unit Value 

Fe (OH)3 Sorbent mg 10 

Hg(NO3)2 mmol/L 0.25 - 1 

Temperature  C 20 

pH - 3.0±0.3 

 

The PHREEQC model was used to calculate the Hg(II) sorption by surface complexation 

with Fe(OH)3 using the specific surface area characteristics of Fe(OH)3 and the 

thermodynamic data added to the model. The model result was then compared with the 

experimental sorption data obtained by Cruz-Guzman et al. (2003) (Figure 11). 

 

 

Figure 11 The model surface complexation prediction capability testing for scenario 1: 

Hg(II) surface complexation on Fe(OH)3, sorption experimental result Cruz-Guzman et 

al. (2003) (dot); the enhanced PHREEQC model (dashed line) 
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Figure 11 shows the plot between the concentration of Hg in Fe(OH)3 (Cs) and in water 

(C) as estimated by the model and the experimental data Cruz-Guzman et al. (2003); the 

values are within the same range and trend comparably. The comparison indicates that 

the concept, mathematics of surface complexation and the needed thermodynamic data 

added into PHREEQC are quite appropriate to represent the sorption of Hg(II) on 

Fe(OH)3 surface.   

4.5.2 Testing Scenario 2: Hg(II) Sorption on Humic Acid 

In this scenario, the enhanced PHREEQC model was used to test its capability to 

predict the sorption of Hg(II) on Humic Acid (HA), using the added thermodynamic 

database obtained from Yin et al. (1997). The sorption experimental conditions obtained 

in the Cruz-Guzman et al. (2003) study (Table 28) were used to assess the model 

predictive performance.  

The same experimental condition in Table 28 was used to compare PHREEQC 

simulation of sorption with the Cruz-Guzman et al. (2003) sorption experimental result 

(Figure 12). 

Table 28 Scenario 2: sorption experimental condition in the Cruz-Guzman et al. (2003) 

study used for model confirmation for Hg(II) sorption of Humic Acid 

Parameter Unit Value 

HA Sorbent mg 10 

Hg(NO3)2 mmol/L 0.25 - 5 

Temperature  C 20 

pH - 3.0±0.3 
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Figure 12 The model Hg-HA complexation prediction capability testing for scenario 2: 

sorption experimental result Cruz-Guzman et al. (2003) (dot); enhanced PHREEQC 

model (dashed line) 

The results of Hg-HA sorption isotherm obtained from both the enhanced PHREEQC 

model and the experimental study were quite comparable. The comparison of both results 

in Figure 12 confirmed that the concept, mathematics and thermodynamic database of 

Hg-HA surface complexation that was added to enhance the PHREEQC model 

reproduces well the from experimental results of the reference, adding confidence to the 

use of the enhanced PHREEQC model for the prediction of Hg(II) sorption on the HA.     

4.5.3 Testing Scenario 3: Hg and MeHg Sorption Kinetic on Floridan 

Aquifer Bedrocks  

The model was tested for its capability to calculate the kinetic sorption of Hg and 

MeHg on the Florida aquifer bedrocks at both aerobic and anaerobic conditions using the 

first-order kinetic rate equation, tkS
dt

dS
 , and rate parameters shown earlier in Table 

21. The sorption experimental conditions in the Krabbenhoft et al. (2007) study were 

used for the model simulations (Table 29).  
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Table 29 Scenario 3: water condition used to test the model capability for Hg and MeHg 

kinetic sorption on Floridan aquifer bedrock (Krabbenhoft et al., 2007) 

Parameters Unit Value 

Aquifer bedrock Sorbent kg 1 

Water solution mmol/L 0.2 – 5.0 

pH - 7.4 

Temp  C 23 

Alkalinity mg/L 150 

Calcium mg/L 53 

Magnesium mg/L 12.1 

Potassium mg/L 6.8 

Sodium mg/L 45.3 

Chloride mg/L 87 

Sulfate mg/L 28.7 

Hg ng/L 2.1 

MeHg ng/L 0.09 

 

The kinetic sorption results calculated by the model were then compared with the 

experimental results of Krabbenhoft et al. (2007). The comparison is shown in Tables 30 

and 31 for Hg(II) and MeHg, respectively. 
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Table 30 Scenario 3: Comparison results of Hg kinetic sorption on Floridan aquifer 

bedrock between Krabbenhoft et al. (2007) study and kinetic model calculation 

Condition Time 
Experiment 

Dissolved Hg, 

ng/L 

Experiment 
Sorbed Hg, ng/kg 

Model 
Sorbed Hg, 

ng/kg 

Initial 2/4/2004 2.14 0 0 

Aerobic 

Condition 

2/4/2004 2.14 0 0 

2/18/2004 1.74 0.39 0.21 

3/17/2004 0.67 1.47 1.40 

4/15/2004 0.33 1.81 1.79 

5/13/2004 0.16 1.97 1.98 

Anaerobic 

Condition 

2/4/2004 1.45 0.68 0.71 

2/18/2004 0.75 1.39 1.12 

3/17/2004 0.55 1.58 1.65 

4/15/2004 0.24 1.89 2.00 

5/13/2004 0.13 2.01 2.20 
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Table 31Scenario 3: Comparison results of MeHg kinetic sorption on Floridan aquifer 

bedrock between Krabbenhoft et al. (2007) study and kinetic model calculation 

Condition Time 
Experiment 
Dissolved 

MeHg, ng/L 

Experiment 
Sorbed MeHg, 

ng/kg 

Model 
Sorbed MeHg, 

ng/kg 

Initial 2/4/2004 0.090 0.0 0.0 

Aerobic 

Condition 

2/4/2004 0.085 0.005 0.005 

2/18/2004 0.024 0.066 0.064 

3/17/2004 0.009 0.081 0.094 

4/15/2004 0.005 0.085 0.102 

5/13/2004 0.006 0.084 0.102 

Anaerobic 

Condition 

2/4/2004 0.090 0.0 0.0 

2/18/2004 0.028 0.062 0.061 

3/17/2004 0.023 0.067 0.076 

4/15/2004 0.014 0.076 0.079 

5/13/2004 0.015 0.075 0.079 

 

The kinetic sorption results calculated from the model and plotted against the 

experimental results are shown in Figure 13. 
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Figure 13 The model kinetic sorption prediction capability testing for scenario 3: Hg and 

MeHg kinetic sorption on Floridan aquifer bedrock experimental result Krabbenhoft et al. 

(2007) (dot); enhanced PHREEQC model (dashed line). 

 

Tables 30 and 31 and Figure 13 show that the model provided similar sorption kinetic 

trends to those of the experimental results for both Hg and MeHg. This reaffirms that the 

model is capable of calculating the kinetic sorption for Hg and MeHg in the Florida 

aquifer bedrock. 
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4.6 Mathematical Model Confirmation in Batch Mode – Field Scale 

4.6.1 Testing Scenario 1: Model Prediction Capability for Major Ions at 

Wide Range of Ionic Strength (Increase in Salinity)  

In this section, the model was tested for its capability to predict the change in 

dissolution and precipitation of major ions (i.e., Ca
2+

, Mg
2+

, K
+
, Na

+
, Cl

-
 and SO4

2-
), 

which are the main constituents in the groundwater of  the Floridan aquifer, with the 

effect of salinity caused by the intrusion of seawater (Price et al., 2003). This testing will 

also help to confirm that the model can be used for a wide range of ionic strengths of 

water (I is less than 0.02 for freshwater, and ~ 0.7 for seawater). In order to test the model 

prediction capability, a series of model simulations, mixing saline with freshwater, were 

carried out within assumptions. Then the comparison between model results and water 

quality data obtained from over 30 monitoring wells in the central to south Florida 

regions were made. The average freshwater and seawater water quality data, during the 

years 2005-2006, obtained from the DBHYDRO database website were used for the 

model testing. The freshwater monitoring well locations are shown in Table 32.  

Table 32 The location of the selected freshwater water quality monitoring stations 

(DBHYDRO) 

Parameter S332BES S332CWD S332CWS S332DES 

S332BES 253254.185 803343.98 Miami-Dade East Coast Buffer 

S332CWD 253053.735 803429.21 Miami-Dade Everglades National Park 

S332CWS 252809.954 803427.64 Miami-Dade Everglades National Park 

S332CWS 252809.954 803427.64 Miami-Dade Everglades National Park 

S332DES 252717.076 803421.91 Miami-Dade East Coast Buffer 
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The average freshwater and seawater water quality data for the major ions, 

including Ca, K, Na, Mg, Fe, DO, Cl, SO4, and Alkalinity, are shown in Tables 33 and 

34, respectively. 

Table 33 Freshwater water quality used for the fresh-seawater mixing model, unit in 

mg/L for major ion and °C for temperature (DBHYDRO) 

Parameter S332BES S332CWD S332DWS S332DES S332CWS Average 

pH 7.0-7.6 6.8-7.2 6.9-7.4 6.7-7.3 6.8-7.3 7.15 

Temp 23.0-28.8 25.9-23.3 22.8-30.1 25.1-26.9 23.1-29.4 25.78 

Alkalinity 205-224 202-221 194-226 198-220 203-221 209.39 

Ca 66.2-77.0 71.2-77.2 66.1-74.9 74.3-77.6 66.7-76.1 73.1 

K 2.8-7.0 1.8-2.7 1.5-2.8 2.1-2.9 1.5-2.8 2.47 

Na 32.2-45.5 29.7-37.0 19.7-34.2 22.0-30.7 27.0-40.5 31.39 

Mg 8.2-10.1 6.1-7.4 5.0-8.3 5.1-5.7 5.5-8.3 6.95 

Fe 0.24-0.30 0.18-0.45 0.22-0.33 0.55-0.84 0.22-0.45 0.39 

DO 0.12-0.19 0.09-0.14 0.06-0.18 0.06-0.35 0.08-0.35 0.13 

Cl 49.5-68.1 43.8-58.2 29.8-53.2 40.7-47.3 40.2-61.7 47.53 

SO4 0.7-5.8 0.3-1.7 0.5-3.7 0.1-0.4 0.1-2.7 1.12 
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Table 34 Seawater water quality used for the fresh-seawater mixing model (DBHYDRO) 

Parameter Unit Value 

pH - 8.2 

pe - 8.4 

density mg/L 1.0 

Temperature °C 25 

Ca mg/L 412.3 

Mg mg/L 1291.8 

Na mg/L 10768 

K mg/L 399.1 

Cl mg/L 19353 

Alkalinity mg/L 141.7 

SO4 mg/L 2712 

 

4.6.1.1 Testing methodology 

The simulation for the fresh-seawater mixing model was divided into 2 steps. In 

order for the model to represent the Floridan aquifer geochemistry, the freshwater was 

firstly equilibrated with calcite under the assumption that the freshwater in the Florida 

aquifer equilibrates with calcite bedrocks (simulation step 1). The fresh groundwater 

saturated with calcite was then called “carbonate groundwater” (Barlow and Richard, 

2010; Tibbals, 1990). The carbonate groundwater was then mixed in fresh-seawater 

model simulation (simulation step 2). 
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- Step 1: Carbonate groundwater simulation 

The first step of simulation represented the equilibrium dissolution of calcite 

bedrock by the fresh groundwater. Geologically, the groundwater in this area underlies 

the calcite bedrocks. Upon their contacting, the dissolution of calcite by groundwater 

occurs, and become carbonate groundwater. The reaction equation of calcite 

dissolution/precipitation used in the model is shown in equation 42. 

CO2(g) + H2O + CaCO3 ↔ Ca
2+

 + 2HCO3
- 
     (Eq. 42) 

The carbonate groundwater simulation was defined by equilibrating freshwater (the 

average value in Table 33) with calcite (to yield the saturation index of calcite, SIcc = 0). 

Equation 42 indicates that an increase of CO2 results in dissolution of CaCO3. When 

removing CO2 from the water, the reaction goes to the left (Eq. 42), which causes the 

precipitation of CaCO3. For this simulation, it was assumed that the partial pressure of 

carbon dioxide )P(
2CO

in groundwater was 10
-2

 atm. (Plummer and Sprinkle, 2001). The 

output represented the carbonate groundwater and was used for the mixing simulation in 

step 2. 

- Step 2: Carbonate groundwater-seawater mixing simulation 

The carbonate groundwater in step 1 was then used to mix with different seawater 

proportions varying from 0-100% in the mixtures. PHREEQC calculates the 

concentration in mixtures by multiplying the concentration of each element in each 

solution with its mixing fraction (Parkhurst, 1995), summing these numbers, and dividing 

by the sum of mixing fractions. For instance, Na concentration in solution 1 is 0.1 mol/L, 

and 0.5 mol/L in solution 2. If the solutions 1 and 2 are mixed in the proportion of 

0.2:0.8, then the Na concentration in the new solution is (0.1 x 0.2 + 0.5 x 0.8)/1 = 0.42 
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mol/L. The temperature and other intensive properties of the mixture were calculated the 

same way as the concentration. The model calculates the change of ionic concentrations 

and saturation indexes (i.e. Calcite, Aragonite, Dolomite, Gypsum, etc.), as a function of 

ionic strength caused by seawater in the mixture. 

4.6.1.2 Testing results 

A. Major ion concentration as function of salinity 

The results obtained from the mixing model simulations were then used to 

compare with the observed Coastal Floridan aquifer data collected from over 30 

monitoring stations during the years 2005 and 2006. The model results of major ion 

concentrations, as a function of salinity, were plotted against the observed data in Figure 

14. The complete observed Coastal Floridan aquifer quality database and the selected 

monitoring station locations are shown in Appendix D. 

In Figure 14 the observed data are represented by blue circles; the model results 

are shown in black lines. Figure 14 clearly shows that the salinity and major ion 

concentrations are linearly related, for both observed data and model results, with the 

coefficient of determinations, R
2
, greater than 0.8. The model results for Na, Mg, K and 

Cl ions showed similar trends and correlation to the observed data; lower R
2
 were 

obtained for the Ca and SO4 ions.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 14 Comparison of major ion concentrations as a function of salinity in the 

mixtures between observed data collected from DBHYDRO (dots) and model results 

(lines); (a) Na, (b) Mg, (c) K, (d) Ca, (e) Cl and (f) SO4  

 

B. Saturation indexes with salinity 

A 
2COP  = 10

-2
 was assumed for the mixing model. 

2COP  in groundwater is one of 

the important factors that influences the change in water pH and the dissolution and 

0 20 40 60 80 100

0

4000

8000

12000

16000

0 10 20 30

% Sea water

N
a

 (
m

g
/L

)

Salinity (‰)

R2 = 0.94

0 20 40 60 80 100

0

500

1000

1500

0 10 20 30

% Sea water

M
g

 (
m

g
/L

)

Salinity (‰)

R2 = 0.9

0 20 40 60 80 100

0

200

400

600

0 10 20 30

% Sea water

K
 (

m
g

/L
)

Salinity (‰)

R2 = 0.9

0 20 40 60 80 100

0

500

1000

1500

0 10 20 30

% Sea water

C
a

 (
m

g
/L

)
Salinity (‰)

R2 = 0.81

0 20 40 60 80 100

0

10000

20000

30000

0 10 20 30

% Sea water

C
l (

m
g

/L
)

Salinity (‰)

R2 = 0.98

0 20 40 60 80 100

0

1000

2000

3000

4000

0 10 20 30

% Sea water

S
O

4
(m

g
/L

)

Salinity (‰)

R2 = 0.86



 

78 

precipitation of carbonate minerals. Assuming 
2COP  = 10

-2
 simulated a water pH that was 

comparable to the observed value the low seawater percentages (Figure 15). However, 

the water pH decreased at higher percentage of seawater, which did not match as well as 

in the case of the lower salinity fractions. A possible explanation is that ion-exchange 

occurs at high seawater percentages (referred to Ca concentration in Figure 15) which 

releases vast Ca
2+

 into the solution. Some of the Ca
2+

 may react with HCO3
-
 causing 

CaCO3 and CO2 (g), thus, the water pH decreases. 

 

  

Figure 15 Water pH in the Floridan aquifer (open circles) for the sample collected during 

2005 and 2006. The theoretical water pH (solid line) was calculated by PHREEQC model 

 

The PHREEQC model was used to calculate the saturation indexes of Aragonite 

(CaCO3), Calcite (CaCO3), Dolomite (CaMg(CO3)2), Halite (NaCl), Gypsum (CaSO4), 

and Magnesite (MgCO3) of the ground-seawater mixing process. The results from the 

model were plotted against the seawater proportion and salinity in the mixture and 

compared to the calculated saturation indexes of observed data (Figure 16). 
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(a) 

  

(b) 

  

(c) 

  

(d) 

 

(e) 

  

(f) 

Figure 16 Various minerals saturation indexes (a) Calcite; (b) Aragonite; (c) Dolomite; 

(d) Magnesite; (e) Gypsum; (f) Halite, observed data (dots) and model result (lines) 

 

The mixing model results of calcite and aragonite saturation indexes in Figure 16 

show the SI < 0 for the mixture containing 10-20% of seawater. This indicates that there 

is dissolution of these minerals. The model results were comparable with the observed 
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data at this point (<20% seawater). Differences between the observed data and the model 

predictions of saturation indexes occurred at seawater percentages greater than 20%; the 

model underpredicted, for those minerals were not as oversaturated as expected from 

observed data. An explanation is non-conservative behavior of calcite dissolution, ion-

exchange, and CO2 flux (Stoessell et al., 1989; Price et al., 2006).  

The saturation state of dolomite and magnesite showed similar behavior to calcite 

and aragonite; big differences between observed data and the model results occurred for 

seawater proportion greater than 20%. However, the oversaturation of dolomite was 

found for all seawater percentages, while the under-saturation of magnesite is found in 

the mixtures containing seawater less than 20%. In reality the deposit of dolomite is 

kinetically favored, which also depends on the ratio of [Mg]:[Ca] and the change of 
2COP  

(Pulido-Leboeuf, 2004). One basic condition that is required for the occurrence of 

dolomite deposition is that the ratio of [Mg] to [Ca] should be greater than 1(Margaritz et 

al., 1980), which was found for all the seawater proportion in Floridan aquifer. 

Nevertheless, the dolomitization is very much influenced by 
2COP . Change in CO2 flux 

by the respiration or the microbial metabolism affect the dolomitization. Thus the 

dissolution and precipitation of dolomite in Floridan aquifer may not happen 

thermodynamically as in Figure 16. A further investigation on dolomitization in Floridan 

aquifer is needed.  

Gypsum saturation indexes in Figure 16 showed the same trends for both the 

observed data and the model results. Both results indicated the undersaturation of gypsum 

for all seawater proportions. Nevertheless, the saturation index of observed data was 

found slightly higher than that from the theoretical model. This indicated the presence of 
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SO4 sources other than seawater. Samborska and Halas (2010) reported that the sources 

of SO4 in carbonate aquifers could be from the de-dolomitization process (equation 43) 

(Plummer et al., 1990) and the dissolution of pyrite (equations 44-45) (Stumm and 

Morgan, 1996, Banks et al., 1996).  

-2

4

+2+2

3234 SO8.1+Mg8.0+Ca+CaCO6.1=)CO(CaMg8.0+CaSO8.1  (Eq. 43) 

   H2SO2FeOHOFeS 2
4

2
222

7
2

-     (Eq. 44) 


  H4SO2)OH(FeOHOFeS 2

4322
7

24
15

2
-    (Eq. 45) 

The co-existence of gypsum in carbonate rocks indicates the de-dolomitization 

that causes the dissolution of gypsum and dolomite and precipitation of calcite. 

Consequently, this process increases the concentrations of Ca, Mg and SO4 ions in the 

solution, which could be a reason for the concentrations of these ions exceeding those 

predicted by the theoretical model. One possible source of SO4 ion could be from the 

dissolution of pyrite which cannot be rejected, since there are some studies (Pichler et al., 

2011) that reported the occurrence of pyrite dissolution in Floridan aquifer.  

Halite saturation indexes from both observed and model results showed the under-

saturation in the mixtures with all seawater proportions. However, the model gave 

slightly overestimated SI, especially at seawater percentages greater than 20%. This 

could be because of the non-conservative dissolution of carbonate rocks that lead to 

changes in ionic strength. Thus, it affects the dissolution of halite. 

4.6.1.3 Testing conclusion 

The model provided good predictions on major ion concentrations as a function of 

salinity with R
2
 > 0.9 for Na, Mg, K and Cl. For Ca and SO4 concentrations, the 
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correlation of R
2 

> 0.8, is obtained. It leads to the possible presence of Ca and SO4 

sources other than seawater and their minerals. The prediction of saturation indexes is 

comparable to observed data. Overall, the enhanced model shows good potential to be 

used to calculate the major ion reactions in wide ranges of ionic strength. This confirms 

that the enhanced model is capable and can be employed to predict the Hg reactions in 

water. 

 

4.7 Process Confirmation in Transport Mode – Field Scale 

4.7.1 Testing Scenario 1: Testing the Fate and Transport of Hg and Heavy 

Metals in a Groundwater Setting at Oak Ridge, TN 

This section presents the testing of enhanced PHREEQC model capability to 

simulate geochemical processes and coupling them to flow and transport settings. The 

purpose was to explore the potential of the model to assess the fate and transport of a 

group of heavy metals in a groundwater field site; the site is located at the Y-12 National 

Security Complex (NSC) in Oak Ridge, Tennessee. Historical data show that more than 

200 tons of Hg from this Y-12 atomic plant were released into the surrounding 

environment during operations in the 1950s (Brooks and Southworth, 2011). Studies have 

also shown that metals accumulated in the soil, rock, and groundwater of the site 

consequentially became sources of contamination to nearby rivers and creeks (e.g., East 

Fork Poplar Creek, Bear Creek) (AJA technical services, inc. 1998). For instance, 

mercury (Hg), zinc (Zn), cadmium (Cd) and lead (Pb) have been found and reported on 

the site groundwater (Brooks and Southworth, 2011; Dong et al., 2010; Loar et al., 2011; 

and Stewart et al., 2009). The site is reported to have a Ca-Mg-HCO3 groundwater type. 
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In this study, ion exchange and surface complexation reactions were hypothesized 

to be the dominant reactions of the study of metals in groundwater transport at this site. A 

previous study documented that ion exchange and precipitation were the major reactions 

that affected the change of ionic species, along with rock weathering, for this site (Toran 

and Saunders, 1999). The approach herein uses the enhanced PHREEQC model to couple 

the geochemical and transport components to verify the possible role of ion exchange and 

surface complexation in the groundwater transport of the selected metals by comparison 

to observed concentrations.  

4.7.1.1 Testing site  

The geology and hydrology as well as the groundwater quality data at Oak Ridge 

Y-12 plant were obtained from five existing core holes (GW 131 to GW 135). These core 

holes were instrumented with multiport monitoring systems at depths of 60–300 m below 

land surface within Bear Creek Valley (Dreier et al., 1993). Four of the core holes (GW-

132 through GW-135) are along Bear Creek Valley and Chestnut Ridge on the western 

end of the Y-12 plant. The fifth core hole, GW-131, is located along the geologic strike 

with GW-135 on Chestnut Ridge near the eastern end of Y-12 plant (Figure 17). The 

prevailing direction of the groundwater flow along the valley is from the west to the east 

(Figure 18, from GW-135 to GW-131) (Dreier et al., 1993). The distance between GW-

135 and GW-131 is 2414 ft. or 736 m. 
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Figure 17 Study area location of the five core holes and of the section A-A between GW-

131 and GW-135 at Y-12 plant, Oak Ridge, Tennessee (Dreier et al., 1993) 

 

Figure 18 Profile, is strike-parallel section, shows hydrology and geology for core holes 

GW-131 and GW-135 where €d is Copper Ridge Dolomite, €m is Maynardville 

Limestone, and €n is Nolichucky Shale (obtained from Dreier et al., 1991; and Toran and 

Saunde, 1999) 

The study focuses on the flow in the saturated zone, between the water table and 

intermediate intervals level (depths of about 300 ft. or 91.5 m.) (Jago et al., 1995). At 

these depths, the groundwater lay on the Copper Ridge Dolomite where the background 

water is classified as Ca-Mg HCO3 water type (Toran and Saunders, 1995; Dreier et al., 

1993). The water quality at GW-135 is shown in Table 35 and was input to define the 

groundwater quality background characteristics. 
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Table 35 Analysis of groundwater at core hole GW-135, Oak Ridge, TN (Dreier et al., 

1993) 

Parameters Units Value 

pH - 8.0 - 8.4 

Temperature 
o
C 20.2 

K mg/L 0.61 - 0.88 

Na mg/L 0.37 – 0.58 

Mg mg/L 17 - 22 

Ca mg/L 28 - 33 

Cl mg/L 1 - 2 

SO4 mg/L 2 - 6 

NO3 mg/L 0.5 - 1 

Fe mg/L 0.1 – 0.3 

Hg mg/L 0.00086 - 0.0066 

Pb mg/L 0.004 – 0.006 

Zn mg/L 0.013 - 0.022 

Cd mg/L 0.0031- 0.059 

 

4.7.1.2 Methodology 

A. Simulations in 1-D transport 

The geochemical model PHREEQC coupled to a one-dimensional (i.e.,1-D) 

transport algorithm was used to assess the heavy metal contaminations fate and transport 

from a starting core hole (GW-135) to the destination point (GW-131) (Figures and 

Figure 18). 
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The travel distance between GW-135 and GW-131 is 736 m (or 2414 ft.). The 

average groundwater pore velocity was reported to be up to 0.66-1.00 m/day (Jago et al., 

1995). An average velocity of 0.66 m/day and a dispersion coefficient DL of 0.066 m
2
/d 

were judged appropriate to be used in the transport simulations at the depths of interest 

(Jago et al., 1995). 

Initial conditions were defined by the water quality characteristics at core hole 

GW-135 for major ions, heavy metals of concerns, pH and temperature. A constant-flux 

type-three boundary condition was used to define as the boundary condition at GW-135 

in the simulations. PHREEQC then calculated the change in aqueous chemistry 

(dissolution-precipitation, speciation, ion exchange, and sorption) along the travel 

distance based on an ion-association model for two scenarios: a) ion-exchange only (with 

major cations) and b) ion-exchange with sorption reaction on Fe(OH)3.   

B. Ion exchange 

At this site, the exchange capacity (CEC) of the dolomite and quartz rich sediment 

is about 39 meq/kg (Appelo and Postma, 2005; and Vertacnik et al., 1997), while the bulk 

density (ρb) and the porosity (θ) of the  used in this paper are, respectively, 1.67 g/cm
3
 

and 0.5 (Dreier et al., 1993). Converting CEC to a constant volume (mmol/kg to mmol/L) 

facilitates comparison with the quantities of elements in the pore solution and mass 

transfer associate with reaction and transport through the groundwater. The CEC of 39 

meq/kg soil can be converted to 130 mmol/L of pore water using equation 46 (Appelo 

and Postma, 2005): 

  
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The exchange reaction equations used in this study included Ca and Mg, which were 

assumed to occupy 100% of all exchanged sites. The exchange reactions for Ca-I and 

Mg-I, where I represents any cation with i valence state, are presented in equations 47 

and 48. 

  

I
Ca

K
i

I
i

XCa
i

XI
i

Ca ;2
2

22 
    (Eq. 47) 

  

I
Mg

K
i

I
i

XMg
i

XI
i

Mg ;2
2

22 
   (Eq. 48) 

The exchange reactions and exchange coefficients relative to Ca
2+

 and Mg
2+

 after the 

Gaines-Thomas convention (Bruggenwert and Kamphorst, 1979) are shown in Table 36. 

Table 36 Exchange reaction equations and coefficients for Ca and Mg (Appelo and 

Postma, 2005; Bruggenwert and Kamphorst, 1979; and Stumm and Morgan, 1996) 

Reaction Coefficients (K) 

Ca
2+

 + Hg-X2  Ca-X2 + Hg
2+

 KCa\Hg = 0.25 

Ca
2+

 + Zn-X2  Ca-X2 + Zn
2+

 KCa\Zn = 1.00 

Ca
2+

 + Pb-X2  Ca-X2 + Pb
2+

 KCa\Pb = 0.75 

Ca
2+

 + Cd-X2  Ca-X2 + Cd
2+

 KCa\Cd = 1.00 

Ca
2+

 + Mg-X2  Ca-X2 + Mg
2+

 KCa\Mg = 1.25 

Mg
2+

 + Hg-X2  Mg-X2 + Hg
2+

 KMg\Hg = 0.20 

Mg
2+

 + Zn-X2  Mg-X2 + Zn
2+

 KMg\Zn = 0.80 

Mg
2+

 + Pb-X2  Mg-X2 + Pb
2+

 KMg\Pb = 0.60 

Mg
2+

 + Cd-X2  Mg-X2 + Cd
2+

 KMg\Cd = 0.80 

Mg
2+

 + Ca-X2  Mg-X2 + Ca
2+

 KMg\Ca = 0.80 
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C. Sorption 

PHREEQC offers a surface complexation model to calculate the sorption of heavy 

metals on a mineral, which can define the mineral (i.e., ferric oxide), the available 

sorption sites, and the sorption equilibrium constant (K). This study used the Linear Free 

Energy Relations (LFER) method to calculate the sorption reaction constant for each 

metal of interest (Dzombak and Morel, 1990) and used a complexation reaction on 

Fe(OH)3 for two types of sites, a strong site type (i.e., Hfo_sOH) and a weak type site 

(i.e., Hfo_wOH) (Stumm and Morgan, 1996; and Dzombak and Morel, 1990). Properties 

of hydrous ferric oxide were used for the model calculations. The sorption reactions and 

their sorption constants used in the model are presented in Table 37 (Farley et al., 1984; 

Stumm and Morgan, 1996; and Dzombak and Morel, 1990). 

Table 37 Equations and constants of sorption reactions of ions on Fe(OH)3 (Farley et al., 

1984; Stumm and Morgan, 1996; and Dzombak and Morel, 1990) 

Reactions Log Kads 

Hfo_sOH + Ca
+2

 = Hfo_sOHCa
+2

 4.97 

Hfo_wOH + Ca
+2

 = Hfo_wOCa
+
 + H

+
 -5.85 

Hfo_wOH + Mg
+2

 = Hfo_wOMg
+
 + H

+
 -4.6 

Hfo_sOH + Cd
+2

 = Hfo_sOCd
+
 + H

+
 0.47 

Hfo_wOH + Cd
+2

 = Hfo_wOCd
+
 + H

+
 -2.9 

Hfo_sOH + Zn
+2

 = Hfo_sOZn
+
 + H

+
 0.99 

Hfo_wOH + Zn
+2

 = Hfo_wOZn
+
 + H

+
 -1.99 

Hfo_sOH + Pb
+2

 = Hfo_sOPb
+
 + H

+
 4.65 

Hfo_wOH + Pb
+2

 = Hfo_wOPb
+
 + H

+
 0.3 

Hfo_sOH + Hg
+2

 = Hfo_sOHg
+
 + H

+
 7.98 

Hfo_wOH + Hg
+2

 = Hfo_wOHg
+
 + H

+
 5.87 
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4.7.1.3 Testing results 

A. Dissolved metal transport prediction with ion exchange occurrence 

The concentrations of dissolved metals along the travel distance, when the effect 

of cation exchange capacity on the heavy metals retention is considered are shown in 

Figure 19. The dissolved concentrations of Zn, Pb, and Cd are predicted to decrease 

sharply within the first 100 m, sorbing in trace amounts beyond 100 m, while the Hg 

concentration remains quite constant over most of the entire distance between core holes 

but showing a decreasing trend around GW-131. The pattern of transport and the 

differences among the metals of interest may be explained by the lower exchange 

coefficients of Hg to Ca and Mg (KCa\Hg = 0.25, and KMg\Hg = 0.20) than those of the other 

metals (i.e., Zn, Pb, and Cd) to Ca and Mg Table 36. Additional analyses also indicate 

that Ca and Mg occupy most of the exchanged sites in the rock matrix (~60% for Ca and 

~40% for Mg), a dolomite bedrock (Toran and Saunders, 1999), where dissolution should 

yield high concentrations of Ca and Mg in the groundwater (i.e., Ca-Mg-HCO3 

background water type).  
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Figure 19 Effect of ion exchange on metal concentration along the distance between core 

holes 

B. Dissolved metal transport prediction with ion exchange and sorption occurrence 

 

Figure 20 Effect of ion exchange and sorption on dissolved metal concentration along the 

distance between core holes 

Figure 20 shows the concentration of heavy metal along the travel distance when ion 

exchange is simulated simultaneously with the sorption on the precipitated Fe(OH)3.The 
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results show that the presence of precipitated Fe(OH)3 may trigger more sorption on its 

surface of Hg and Pb than of Zn and Cd; Figure 21 shows, with more detail, the 

comparison between the possible role of ion exchange only and that of simultaneous ion 

exchange and sorption for Hg and Pb along the distance between the core holes.  

 

 
Figure 21 Dissolved metal concentrations, (a) Hg; and (b) Pb and pH profiles along the 

distance between core holes: only ion exchange model (dashed line) and ion exchange 

with sorption on Fe(OH)3 (solid line) 

The lower predicted concentrations of Zn and Cd may be explained by their much smaller 

sorption-reaction constants on Fe(HO)3 (i.e., log K is 0.99 for Zn and 0.47 for Cd) than 

those of Hg (log K = 7.98) and Pb (log K = 4.65) (Zhu, 2002; and Morel and Hering, 
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1993). The latter difference is expected to specially occur when limited amounts of 

sorbent are available, which results in competition between metals with high sorption 

constants, such as those of Hg and Pb, and those with low constants such as Zn and Cd. 

 

C. Field verification of simulation scenarios 

An attempt was made to verify the role of ion exchange and sorption, for the 

initial and boundary conditions of the simulations, using limited water quality data at 

GW-131 (Dreier et al., 1993). The estimated change in dissolved metal concentrations, 

with distance between GW-135 and GW-131for the case of simultaneous ion exchange 

and sorption, and the available water quality measurements at GW-131 are tabulated in 

Table 38.   

The predictions of dissolved concentrations at the location of core hole GW-131 

are found to be, within reported ranges, for all major ions, below limits of detection for 

the metals of interest, and for pH. Available measurements are however not sufficient to 

satisfactorily verify the hypothesized scenarios of process dominance in the field setting, 

but they do provide an encouraging indication of the potential of the modeling approach 

to simulate field conditions. Clearly, an appropriate plan for measurements of both flow 

and transport parameters and water quality constituents is needed to enhance the 

opportunity for reasonable field verification. A reasonable verification should provide a 

tool that can be used for that site with a higher level of confidence. 
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Table 38 Predicted and measured groundwater quality between core holes GW-135 and 

GW-131, Oak Ridge, TN (concentrations in mg/L) 

Distance 

(m) 

Observed data at 

GW 135 
Calculated Data 

Observed data 

at GW 131 

0
a
 50 250 500 736 736

a
 

Parameters 
      

pH 8.0 - 8.4 7.54 7.4 7.3 7.1 7.0 - 7.9 

K 0.61 - 0.88 
   

0.82 0.73 – 9.9 

Na 0.37 – 0.58 0.57 0.32 0.38 0.37 0.1 - 110 

Mg 17 - 22 18.4 17.6 18.7 20 18 - 110 

Ca 28 - 33 29.8 29 30.04 33 30 - 190 

SO4 2-700 183 163 142 155 4 – 170 

NO3 1-10 5.01 4.02 4.38 4.43 2-10 

Hg 8.6x10
-4

 - 6.6x10
-3

 0.0059 0.0059 0.0042 1.3x10
-6

 < 0.0002
b
 

Pb 0.004 – 0.006 3.3x10
-10

 5.5x10
-19

 7.1x10
-23

 ~0.00 < 0.004
b
 

Zn 0.013 - 0.022 0.001 7.1x10
-19

 2.4x10
-22

 ~0.00 < 0.002
b
 

Cd 0.0031- 0.059 0.003 2.08x10
-15

 3.0x10
-21

 ~0.00 < 0.002
b
 

aData obtained from Dreier et al. (1991) 
bThe limited detection values 

 

4.7.1.4 Testing conclusions 

The approach herein used couples geochemical and transport components in an 

attempt to verify the role of ion exchange and surface complexation in the transport of the 

selected metals with emphasis on Hg in the groundwater setting at Oak Ridge, TN. 

Overall the simulated dissolved concentrations fall within the ranges of the reported 

water quality measurements, supporting previous findings that concluded ion exchange to 

be an important fate process at this site (Toran and Saunders; 1999). The hypothesized 

roles prove the capability of the enhanced PHREEQC coupled-transport model is a tool 
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that can be used to simulate the hydrogeochemical transport of Hg in groundwater 

setting. 
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V. FUNDAMENTAL SCENARIOS AND ANALYSIS 

 

The objectives of this Chapter are to describe and utilize the enhanced model to 

assess the chemical and physical (fate and transport; advection, dispersion) processes of 

Hg in different scenarios. The fundamental process simulations are described herein 

sections 5.1 and 5.2, respectively. The model was then used to simulate the processes in 

transport (i.e., the coupling between chemical processes and transport) in section 5.3. 

 

5.1 Chemical Processes 

Hg chemical processes for which the thermodynamic database has herein been 

improved include solution and precipitation, ion-exchange, and surface complexation. 

These processes are described in this section. 

5.1.1 Species, Solubility, and Precipitation Processes 

PHREEQC assumes that the dissolved species are in thermodynamic equilibrium. 

The model then calculates the species using the added thermodynamic database. For 

example, the association reaction of the aqueous species is Hg(OH)2 + 2H
+
 = Hg

2+
 + 

2H2O. The log K for this reaction at 25 °C is 6.09. This can be written in the form of 

mass-action equation (recall equation 1): 

2

09.6

]][[

][
10






HHg(OH)

Hg

2

2

       (Eq. 1) 

PHREEQC calculates the solubility and precipitation processes based on the added 

thermodynamic database. It then assumes the activity of pure phase to be one and 

calculates the solubility and precipitation using the mass-action equation. For example, 



 

96 

the solubility reaction of cinnabar is HgS = Hg
2+

 + S
2-

 with log K at 25 °C of -53, thus, 

mass-action equation is  22 SHg

-53 aa  10 . The simple schematic in Figure 22 helps to 

understand that at equilibrium, the model can simulate the speciation-distribution, 

solubility, and precipitation.  

 

 

Figure 22 PHREEQC solution and precipitation process 

 

However, the occurrence of solubility and precipitation, as well as the presence of each 

dissolved species, depend on many factors (e.g., pe, pH, temperature, etc.). The 

sensitivity analysis of these factors with respect to the Hg processes is described in 

section 5.3. 

Dissolution/Precipitation occur depending on 

the water quality (e.g. pe, pH, Hg 

concentration, etc.)

- Cinnabar (HgS)

- Calomel (Hg2Cl2)

- Montroydite (HgO)

- etc.

Solution may contain different Hg-

species depends on water quality(e.g. pe, 

pH, temperature, etc.)

- Hg(OH)2

- HgClOH

- HgOH+

- HgCl+

- HgCl2
- etc. Solution 
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5.1.2 Ion Exchange Process 

Ion exchange is a replacement process of one ion by another on the exchanger. Ion 

exchange is one form of sorption by which one substance becomes attached to another 

through the exchange of ions. The other sorption mechanisms are adsorption (the process 

in which the ion attaches onto the surface of a solid) and absorption (the process in which 

the ion attaches into the solid). For the typical aqueous environment, some examples of 

exchangers are soil, clay and rocks (Figure 23).  

 

 

Figure 23 Ion-exchange process 

 

PHREEQC calculates the ion-exchange species at equilibrium using the added 

thermodynamic database, which is expressed in the mass-action equation. For example, 

the association reaction for the exchange species HgX2 is Hg
2+

 + 2X
-
 = HgX2 with log K 

of -1.39. 

 22

239.1

]][[

][
10



 
XHg

HgX
    (Eq. 49) 

Exchanger

Na+

Hg2+

Na+

Na+ Na+

Hg2+

Solution
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From the mass-action equation of HgX2, the model calculates and solves for the amount 

of HgX2.  

5.1.3 Surface Complexation 

It has been mentioned earlier in this study that surface complexation is the process 

whereby an ion sorbs on the surface of solid surfaces. The solids are minerals, soils, 

rocks, etc. Figure 24 shows the surface complexation process where the ions sorb onto 

the solid surface. The difference between surface complexation and ion exchange 

processes is that surface complexation is not a replacement of ion by another ion unlike 

the ion exchange process. 

 

 

Figure 24 Surface complexation process 

 

PHRREQC calculates the surface complexation species at equilibrium from the 

mass-action equation using the added thermodynamic data. For example, the ferrihydrite 

surface association reaction with Hg(OH)2 species is ≡Hfo_wOH + Hg(OH)2 + H
+
 = 

≡Hfo_wOHg
+
 + 2H2O with log K of 12.6. The mass-action can be expressed as equation 

12 (recall Eq. 12). 
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RT

sψF

e
HOHHgwOHHfo

wOHgHfo 






]][)(][_[

]_[
10

2

6.12
    (Eq. 12) 

The amount of ≡Hfo_OHg
+
 species is calculated by the model using Equation 12. 

 

5.2 Physical Processes 

The physical or transport process in PHREEQC consists of 2 main transport 

mechanisms: 

1) Advection is a transport process in which flowing water transports the 

substances or the pollutants. The process depends on the 1) water flow 

velocity, and 2) direction of water flow. 

2) Dispersion is a transport process that occurs as a result of concentration 

variations. Only the dispersion in the direction of flow or longitudinal 

dispersion is considered here. Dispersion coefficient is the sum of 

mechanical dispersion (αLv) and diffusion (D*).  

PHREEQC calculates the transport of a dissolved chemical by coupling chemical 

and physical process calculations based on the mass conservation principle (Figure 25). 

 

Figure 25 Mass conservation for transport process (Parkhurst and Appelo 1999) 
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Figure 25 graphically depicts that the mass enters the cube from the right side (x 

direction). As mentioned before, the mass is transported by advection and dispersion. 

Mass balance in the system is expressed as: 

reactionoutIn CCC
t

C





     (Eq. 50) 
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 (Eq. 51) 

Equation 51 can be reduced to:  

t

q

x

C
D

x

C
v

t

C
2

2

L


















    (Eq. 52) 

Equation 52 is called the Advection-Reaction-Dispersion equation (previously 

described). Figure 26 shows the simple schematic of the transport process in the 

PHREEQC computational code, in which the flow is divided into cells. Each cell consists 

of solid particles that can interact with the chemicals that may speciate and also can be 

subjected to processes such as ion-exchange and surface complexation, all together 

causing changes in chemical concentration. 
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Figure 26 Coupling processes in PHREEQC to transport process calculations 

This transport process (equation 52), involving advection and dispersion, is solved using 

finite difference method (using elemental time step (Δt) and space (Δx), which is the 

distance between each cell). The chemical change for each element is the sum of all 

equilibrium and non-equilibrium reactions (solution and dissolution/precipitation, ion-

exchange, and surface complexation) that are calculated separately from the transport 

computations for each time step (Δt) (Parkhurst and Appelo 1999). 

 

5.3 Results and Discussion 

In this section, the enhanced model PHREEQC coupled to transport calculations 

is used to assess the chemical and physical processes of Hg in different scenarios. For 

chemical processes, the simulations are conducted in batch mode. This mode is used to 

understand the fundamental Hg behavior at various water pe, pH, and temperatures, and 

in the presence of different exchangers and sorbents (section 5.3.1), but in the absence of 

Solution

1 = n 2 = n i = n n = n

Solid/Mineral/Exchanger

Chemical Processes (i.e. Dissolution/Precipitation, Ion-

exchange, Surface complexation)

Physical Process (i.e. Advection) 

Physical Process (i.e. Dispersion) 
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transport. The enhanced model is then further used to perform the simulation of Hg fate 

and transport. A sensitivity analysis of chemical (CEC and sorbents) and physical (v, DL) 

parameters was conducted to study the effect of these parameters on the Hg fate and 

transport (section 5.3.2). 

5.3.1 Chemical Processes: Batch Mode 

Simulations of Hg behavior at different scenarios were carried out using the water 

quality obtained from groundwater monitoring well 135 located in the ORR area (Table 

39). The water quality data in Table 39 is used for all Hg chemical process simulations 

(sections 5.3.1.1 to 5.3.1.5). 

Table 39 Water quality data obtained from groundwater well 135 located in ORR area 

(Dreier et al., 1993; Elvado Environmental LLC, 2009 and 2011) 

Parameters Value Parameters Value 

pH 6.0 - 8.0 SO4 (mg/L) 2 - 6 

Temperature, °C 20.2 NO3 (mg/L) 0.5 - 1 

K (mg/L) 0.61 - 0.88 Fe (mg/L) 0.1 – 0.3 

Na (mg/L) 0.37 – 0.58 Hg (mg/L) 0.00086 - 0.0066 

Mg (mg/L) 17 - 22 Pb (mg/L) 0.004 – 0.006 

Ca (mg/L) 28 - 33 Zn (mg/L) 0.013 - 0.022 

Cl (mg/L) 1 – 2 Cd (mg/L) 0.0031- 0.059 

 

5.3.1.1 Hg pe-pH diagram 

The objective of this analysis is to assess the Hg-species distribution of various 

soluble and insoluble forms at various pe-pH values using the enhanced PHREEQC 

model. The pe-pH diagram shows in a comprehensive way how protons and electrons 
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shift equilibrium and which species are present and dominant under any given condition 

of pe and pH.  

In this study, the pe-pH diagrams of Hg-species were developed based on the 

redox stability of water, which are shown next in equations 53-54. 

0  K log       (g)H2e2H 2 
      (Eq. 53) 

    
83.1  K log       O2H  4e HO 22  4)g(      (Eq. 54) 

The pe-pH values associate with the partial pressure of H2 and O2, as shown in equations 

55-56. 

2pe2pH0log
2H p        (Eq. 55) 

4pe4pH83.1log
2O p        (Eq. 56) 

The above equations can be rewritten as equations 57-58, where pe is a function of pH. 

2Hppe  logpH0
2
1        (Eq. 57) 

2Opp  log  pH 20.78e
4
1        (Eq. 58) 

The diagrams were produced using the enhanced database of the PHREEQC 

model, which allows modelers to assess the formation of Hg species; soluble and 

insoluble forms, at various pe-pH values. In addition to the capabilities of the existing 

PHREEQC model, the enhanced model is capable of estimating the pe-pH conditions that 

favor the sorption of Hg and the mobility of Hg. The water quality in Table 39 was 

selected for the Hg pe-pH diagram study. This is because the diverse presence of various 

chemical constituents in the water allows the possibility of the formation of several Hg-

species for any given pe and pH conditions. Although the water quality used for the 
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diagram study (Table 39) was groundwater quality data, however, the diagram study is 

not specific only for groundwater condition. The Hg pe-pH diagram study helps in 

describing the trend of Hg behavior in various aquatic environments depending on the 

given of pe-pH. 

The simulations of Hg pe-pH diagrams were determined based on 3 different 

scenarios: 1) without sorbent; 2) with Fe(OH)3 sorbent; and 3) Hg mobility with Fe(OH)3.   

Scenario 1: pe-pH of Hg without sorbent 

Using the water chemical composition in Table 39, the pe-pH diagram of Hg 

species at various pe-pH values is shown in Figure 27. The diagram shows the 

thermodynamically stable species of Hg at different pe-pH, of which only 2 oxidation 

states (Hg
0
 and Hg

2+
) and one solid phase (cinnabar) are stable.   

 

Figure 27 pe-pH diagram of Hg-species at temperature 20 °C 

In oxidation condition of water, Hg
2+ 

 complexes with inorganic ions: Cl ion at pH 

< 7, Cl-OH ion at pH ~ 7-7.5 and OH ion at pH > 7.5. The reaction between SO4 ion and 
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Hg is negligible in oxidizing water condition. However, in reducing water condition 

where S
6+

 is reduced to S
2+

, the solid phase of HgS (cinnabar) is formed. This is because 

Hg has high affinity for sulfide. For such reducing water conditions, cinnabar is present at 

all pH of water. The result obtained from the model is consistent with various studies 

(Little, 2006; Chattopadhyay and Ickes, 2001; Davis et al., 1997; Cox et al. 1996; Sigels, 

1997) that had developed the pe-pH diagrams of Hg using both geochemical models and 

analytical calculation. The results from some previous studies on Hg pe-pH diagram are 

summarized here (Figures 28-31). The result obtained using the PRHEEQC model is 

consistent with those from previous studies. It was confirmed that only two oxidation 

states (Hg
0
 and Hg

2+
) and one solid phase (HgS or cinnabar) are thermodynamically 

stable in the pe-pH ranges considered here (pe = -10 to 20, pH = 2 to 10).  

Sigel, A. and Sigel, H., 1997, Little, 2006 and Davis et al., 1997 developed pe-pH 

diagram of Hg using water conditions that consist of Cl, SO4 and Hg. According to their 

studies, HgCl2 is the dominant species at pH<7 while Hg(OH)2 is present at pH>7 

(Figures 28-30). Cox et al., 1996 developed the pe-pH diagram (Figure 31) using the 

water condition that consists of I, SO4 and Hg. In this case, HgI2 and Hg2I2 were observed 

under oxidizing conditions. The complexation of HgSO4 was not obtained in oxidizing 

water. This can be attributed to its low thermodynamic constant (log K = 2.6 for HgSO4, 

14.2 for HgCl2 and 24.8 for HgI2 (Powell, et al., 2005; Martell and Smith 2001)). 

However, in reducing condition, Hg readily complexed with S (as sulfide) resulting in 

HgS (cinnabar), which is the dominant species in such water condition. This species was 

observed in all the previous studies. 
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Figure 28 A pe-pH diagram for mercury in a typical soil solution (total Hg of 5x10
-11

 M, 

Cl of 2 x 10
-4

 M and S of 6 x 10
-4

M) (Sigel, A. and Sigel, H., 1997) 

 

Figure 29 Eh-pH diagram for Hg at 25 °C and 1 atmosphere pressure. The dashed lines 

represent the stability field of aqueous species, and solid lines are for solid phases. 

System includes water containing 36 mg/L Cl, total S 96 mg/L as SO4
2-

 (Little, M.E., 

2006). On axis y, pe ranges from -13.5 to 20 (Eh to pe conversion is calculated using Eh-

pe relationship: Eh (mV) = 59.2pe, obtained from Stumm and Morgan, 1996) 
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Figure 30 Davis et al., 1997 studied the ability of mercury to cross tissue membranes of 

the mouth, esophagus, stomach, and the small and large intestines. Figure shows 

Gastrointestinal tract pH-Eh conditions superimposed on mercury system, A = Stomach, 

and B = Small Intestinal conditions. Activity of Cl = 10
-3

 M, S = 10
-5

 M, Hg = 10
-5

 M. On 

axis y, pe ranges from -16 to 20 (Eh-pe conversion is calculated using Eh-pe relationship: 

Eh (mV) = 59.2pe, obtained from Stumm and Morgan, 1996) 

 

Figure 31 Stability diagram for Hg in the presence of 0.1 M total I and 0.001 M of S (Cox 

et al., 1996) 
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The result obtained from PHREEQC model (Figure 27) are comparable with the 

results obtained from previous studies (Figures 28-31). The difference is that the Hg 

database of PHEEQC model was enhanced by adding the thermodynamic data of 

HgClOH species. Thus in Figure 27, HgClOH is dominant approximately in the pH range 

of 7-7.5, in oxidizing water condition. It is to be noted here that the range of x and y axes  

in Figure 27 is a subset of the corresponding axes displayed in Figures 28-31. This made 

the comparison between the figures possible.  

Scenario 2: pe-pH of Hg with Fe(OH)3 sorbent 

In this simulation, the enhanced model was used to assess the pe-pH values that 

favor the surface complexation between Hg and Fe(OH)3 sorbent. It was assumed that the 

Fe concentration in solution was 20 mg/L (or log FeT = -3.4 mole). The water quality data 

employed in this simulation is shown in Table 39. The Fe(OH)3 surface properties and 

the surface sorption constants for Hg of Tables 10 and 11 were used in all model 

calculations. The precipitation of Fe(OH)3 and the Hg sorption on the precipitated 

Fe(OH)3 were simulated for different pe-pH conditions. The results are shown in Figure 

32. 
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Figure 32 pe-pH diagram of Hg-species with Fe = 20 mg/L and at temperature 20 °C 

 

Figure 32 shows that, in oxidizing water condition, the precipitation of Fe(OH)3 

mineral occurred at pH 7-8. Hg simultaneously sorbed onto precipitated Fe(OH)3 surface 

by forming surface complexes at these pH ranges. It can also be observed that Hg sorbed 

on the weak sorption sites of Fe(OH)3 (Hfo_wOHg
+
). This is due to the abundance of 

Fe(OH)3 weak sorption sites (weak sites = 0.2 mol/molFe, strong sites = 0.005 

mol/molFe) (Dzombak and Morel, 1990). It can be concluded that, at pH 7-8, Fe(OH)3 

dominates Cl
-
OH ligand for Hg complexation. 

Scenario 3: pe-pH of Hg mobility 

Using the water quality conditions in scenario 2, the Hg phases (dissolved and 

solid phases) in Figure 32 also present the possibility of Hg to be mobilized in the water. 
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In order to better describe the potential for mobilization, Figure 32 is redrawn into a Hg 

mobilization diagram that is shown in Figure 33. 

 

Figure 33 pe-pH diagram of Hg mobilization with Fe = 20 mg/L, temperature 20 °C 

 

The “mobile” section in the figure suggests that the dissolved Hg will be transported in 

the water while “immobile” indicates that cinnabar (i.e., solid phase) is immobilized. Of 

course, if the precipitated Fe(OH)3 is present as fine particles then the sorbed Hg may be 

transported with water. Otherwise, it may settle down. Similarly, a “may be mobile” 

section is also depicted for pe-pH ranges, where Hg sorption occurs. 

5.3.1.2 Sensitivity analysis of Hg species to water pH and temperature 

A sensitivity analysis was conducted using the water quality data in Table 39. The 

temperature was varied from 5 – 35 °C and water pH within 2 – 10. The results of the 

simulations analysis are shown in Figure 34. 



 

111 

  

  

  

  
 

Figure 34 Hg species sensitivity to temperature (5-35 °C) and pH (2-10), black box 

shows groundwater pH range 
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It can be observed in Figure 34 that the formation of Hg-OH species increases 

with increase in water temperature, while the temperature does not favor the formation of 

Hg-Cl species. Temperature favors the formation of HgSO4 at pH 2-6. The effect of 

temperature is negligible for pH > 6. Increase in water pH also increases the formation of 

Hg(OH)2 and Hg(OH)3
-
.However for Hg(OH)

+
 and HgOHCl, the concentrations increase 

with water pH between 2-7; for pH > 7, their concentrations were observed to decline. 

Low water pH (pH 2-6) does not appear to have any influence on Hg-Cl concentrations, 

but , Hg-Cl concentration decreases at pH > 6. 

5.3.1.3 Sensitivity analysis of mineral saturation index with respect to 

water pH and temperature 

The sensitivity analysis using the water quality data in Table 39 was conducted 

for a range of water temperature (5-35 °C) and pH (2-10). 

Figure 35 shows the effect of water temperature and pH on the SI of dominant 

minerals for the water condition in Table 39. From the figure, it can be seen that the SI of 

Ferrihydrite, Goethite, Magnesioferrite, Hematite, K-Jarosite, and Na-Jarosite increase 

with water temperature, while temperature does not affect the formation of Fe(OH)2.7Cl3 

and Lepidocrocite. Increase in water pH favors the formation of all the above minerals, 

except for K-Jarosite and Na-Jarosite, whose SIs decrease at pH greater than 8. This 

analysis also indicates that at pH 7-9.2; temperature 25 °C, water is supersaturated with 

Ferrihydrite, Goethite, Magnesioferrite, Hematite, K-Jarosite, Na-Jarosite, Fe(OH)2.7Cl3, 

and Lepidocrocite. 
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Figure 35 Sensitivity of the SI of minerals to water temperature and pH at oxidation 

water condition  
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5.3.1.4 Sensitivity analysis of Hg-species with respect to the exchangers 

(Illite, Montmorillonite, Vermiculite) 

The effect of exchangers on Hg-species concentrations was investigated at a water 

temperature of 25 °C and pH 2-10 (Figure 36).  

 

  

  

  

Figure 36 Sensitivity analysis of Hg-species concentration with respect to different 

exchangers (the effect of ion exchange); 1 kg/L of exchangers, temperature 25 °C, 

oxidation condition 
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It should be noted that only the effect of ion exchange (no surface complexation) 

is considered here. The ion exchange simulations were conducted using 1 kg of 

exchangers with different CEC: Illite (CEC 6.5 mol/L), Montmorillonite (CEC 15 

mol/L), Vermiculite (CEC 26 mol/L). Figure 36 shows that the exchange of Hg increases 

with CEC in the following order; Illite < Montmorillonite < Vermiculite. 

It can also be observed in Figure 36 that the exchange reactions of Hg(HO)2 and 

Hg(OH)
+
 species occur at high pH. However, high pH does not favor the exchange 

reaction of HgCl2, HgCl3
-
, and HgSO4 species. Low pH favors formation of HgCl2, 

HgCl3
-
, and HgSO4, thus, the better exchange reaction of these species are obtained. 

5.3.1.5 Sensitivity analysis of Hg-species concentration with respect to 

sorbents: (Fe(OH)3, Gibbsite, Kaolinite) 

The effect of sorbents on Hg-species concentration was carried out at water 

temperature of 25 °C, pH 2-10. It should be noted that only the effect of surface 

complexation is considered here (no ion exchange). The simulations were conducted 

using 1 g/L of Fe(OH)3, Gibbsite, and Kaolinite. 

It can be observed in Figure 37 that at pH 2-4 surface complexation does not 

occur. This is because at low pH the surface complexation of H
+
 is dominant at high 

values log K of 7.29, 4.7, and 3.7 for Fe(OH)3, Gibbsite and Kaolinite, respectively. 

These log K values are very high compared to those for surface complexation of HgCl2, 

which is the dominant species at low pH. Therefore, it could be said that, at low pH, there 

is no available surface for Hg complexation. Fe(OH)3 shows high surface complexation 

with all Hg-species at pH 4.5-8.5 compared to other sorbents. This is because of the high 

surface complexation constant (log K). However, the complexation cannot take place at 
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pH > 8.5. This is due to the Point of Zero Charge (PZC) of Fe(OH)3, which ranges 

between pH 8.5 – 9.3. Therefore, the surface complexation does not occur at this pH 

range. With Kaolinite and Gibbsite, the Hg surface complexation is obtained at pH > 5. 

 

  

 
 

  

Figure 37 Sensitivity analysis of Hg-species concentration with respect to different 

sorbents (the effect of surface complexation) ; 1 g/L of sorbents, temperature 25 °C, 

oxidation condition 
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It can also be seen that Hg(OH)2, Hg(OH)
+
 and HgClOH can complex with all 

sorbents better than HgCl2, HgCl3
-
 and HgSO4 species at pH 4.5-8.5. High formation of 

Hg(OH)2, Hg(OH), and HgClOH species occurs at this pH range, while the formation of 

HgCl2, HgCl3
-
 and HgSO4 species decreases. Increase in Hg(OH)2, Hg(OH)

+
, and 

HgClOH formation makes surface complexation reactions possible, which results in a 

higher surface complexation of these species. The surface complexation of Hg are in the 

following order: Kaolinite < Gibbsite < Fe(OH)3. This result is consistent with previous 

studies (Sarkar et al., 1999 and 2000; Kim et al., 2004; Weerasooriya et al., 2007). 

5.3.2 Chemical and Physical Processes: Transport Mode 

This section describes the utilization of the enhanced model to predict the fate and 

transport of Hg. Different scenarios were conducted to mimic the typical transport 

condition in aqueous environments. For all scenario simulations, it was assumed that the 

background water in the flow reach, with a length of 100 m, is the Ca-Mg-HCO3 type, 

which is a typical background water type that can be found at ORR and South Florida 

areas. At the beginning of the flow reach, the groundwater (GW-135) consists of all 

elements, including Hg, as shown in Table 40, which is the water quality data used in 

section 5.3.1. Different scenarios were considered to study the effect of chemical 

processes (i.e. exchangers, sorbents) and physical processes (i.e., v, DL) on Hg fate and 

transport. 
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Table 40 Water quality data used for Hg fate and transport simulations (Dreier et al., 

1993; Elvado Environmental LLC, 2009 and 2011) 

Parameters Background water GW-135 

pH 8.5 6.0  

Temperature, °C 20 20.2 

K (mg/L) - 0.88 

Na (mg/L) - 0.58 

Mg (mg/L) 24 22 

Ca (mg/L) 40 33 

CO3 (mg/L) 60 - 

Cl (mg/L) - 2 

SO4 (mg/L) - 6 

NO3 (mg/L) - 1 

Fe (mg/L) - 0.3 

Hg (mg/L) - 0.0066 

Pb (mg/L) - 0.006 

Zn (mg/L) - 0.022 

Cd (mg/L) - 0.059 

 

5.3.2.1 Typical groundwater flow 

This section describes the modeling performed on the Hg fate and transport in a 

typical groundwater environment. The typical groundwater flow parameters reported in 

the literature and used in this study are listed in Table 41. 
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Table 41 Typical groundwater flow parameters 

Parameters ORR area South Florida area 
Value 

used in 

this 

study 

v (m/d) 
0.6-1.0 (Jago et al., 

1995) 

0.51-4.7 for Miami-Dade County 

(Krupa et al., 2001) 

0.009-0.03 ENP area (Harvey et 

al., 2002) 

0.12 - 0.90 Kissimmee 

Groundwater (Campbell et al., 

1995) 

0.8 

αL (m) 1-2 (Kelkar et al., 2006) 0.9-12 (Schulze-Makuch, 2005) 1 

DL (m
2
/d) 

0.6 – 1.2 (calculated 

using DL= αLv + D*) 

8x10
-3

- 56.4 (calculated using DL= 

αLv + D*) 
0.8 

D* (m
2
/d) 

3x10
-9

 (Kelkar et al., 

2006) 
3x10

-9
 (Harvey et al., 2002) 3x10

-9
 

 

The Hg fate and transport in a typical groundwater enviroment were investigated for 3 

different scenarios: 1) without exchangers and sorbents; 2) with exchangers; and 3) with 

sorbents. 

Scenario 1: Without exchangers and sorbents  

Figure 38 shows the simple schematic of this transport scenario, where the flow 

reach of 100 m long is divided into 10 cells for the coupled PHREEQC model’s 

calculation. The water quality data in Table 40 and flow parameters in Table 41 were 

used in the simulations. 
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Figure 38 Model of Hg transport for a typical groundwater flow condition 

 

The GW-135 flows through the reach with Ca-Mg-CO3 water type, with no interactions 

between Hg and the solid (exchanger/sorbent). PHREEQC calculated the Hg-species 

profile based on inputted water quality data and flow parameters (Figure 39).  

 

Figure 39 Hg-species flow profile in typical groundwater flow condition 
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It can be seen in Figure 39 that the total Hg (THg) shows a conservative behavior 

and indicates the effect of dispersion at around the 70 m of distance from the start. The 

pH profile shows an increase at 50 m. This is due to the effect of flow parameters on the 

mixing of 2 solutions. At pH lower than 6.3, HgClOH is dominant with 50% of THg, 

while Hg(OH)2 and HgCl2 are 35% and 15% respectively. The sharp increase of pH at 50 

m (from 6 to 8.4) affects the distribution of Hg-species. Thus, Hg(OH)2 increases and 

reaches the maximum (Hg(OH)2 = THg) at 70 m, while HgCl2 and HgClOH decrease and 

disappear at 55 m and 70 m respectively. Using the typical groundwater flow condition, 

the travel time for the distance of 100 m is 125 days.  

Scenario 2: With exchangers: Illite, Montmorillonite, and Vermiculite 

In this scenario, the water quality and flow parameters are kept as those in 

scenario 1; the water quality and flow parameters in Table 40 and 43 were used in the 

simulations. However, in this scenario, the exchangers (Illite, Montmorillonite and 

Vermiculite) were individually added into cells 4 and 5 of the flow reach (Figure 40). 

This was to examine the effect of each exchanger with the role of ion exchange on Hg 

fate and transport in a typical groundwater flow environment. Four simulations were 

made 1) with Illite, CEC of 6.5 mol/L, 2) with Montmorillonite, CEC of 15 mol/L, 3) 

with Vermiculite, CEC of 26 mol/L, 4) with Illite+Montmorillonite+Vermiculte, CEC of 

47.5 mol/L.  
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Figure 40 Model of Hg transport for a typical groundwater flow condition. Simulations 

were performed for each individual exchanger (Illite, Montmorillonite and Vermiculite) 

 

Figure 41 (a) shows the comparison of dissolved THg concentration profiles, from 

which, it can be seen that dissolved THg concentration in cells 4 and 5 decrease with 

increase in CEC. In other words, the Hg sorption increases with CEC. Therefore, in this 

study, the exchange capacities (or sorption capacity) of the exchangers are in order of 

Vermiculite > Montmorillonite > Illite. The dissolved Hg-species profiles with Illite, 

Montmorillonite, and Vermiculite are shown in Figures 41 (b), (c), (d), respectively.  

GW-135

1 = n 2 = n 4 = n3 = n 5 = n 10 = n

100 m

Advection (Groundwater velocity, v = 0.8 m/day) 

Dispersion (Groundwater dispersivity, αL = 1 m)

Background water solution 

Exchanger: 1 g of Illite/Montmorillonite/Vermiculite

Ion-exchange

Exchanger: 1 kg  of Illite/Montmorillonite/Vermiculite
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(a) THg with different exchangers 

 

 
(b) Hg-species with Illite 

 
(c) Hg-species with 1 Montmorillonite 

exchanger 

 

 

(d) Hg-species with Vermiculite 

exchanger 

Figure 41 The effect of ion exchange on Hg-species flow profiles for different 

exchangers (Illite, Montmorillonite and Vermiculite). The exchangers were individually 

applied to cells 4 and 5 (40 and 50 m of flow distance) 

 

The Hg profiles do not show significant change with the exchangers. This can be 

attributed to the low exchange constant (Hg
2+

 + 2X
-
 = HgX2, log K = -1.39). Hg(OH)2 is 

the main component that is sorbed by the exchangers. Water pH is not affected by the 

exchangers. 

Scenario 3: With surface complexation: Fe(OH)3, Gibbsite, Kaolinite 

The water quality and flow parameters in this scenario were the same as those 

employed in scenarios 1 and 2. However, the different sorbents were individually added 

to cells 4 and 5 for this scenario. The goal was to determine the effect surface 
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complexation on the Hg fate and transport. The sorbents that were chosen for this study 

(Fe(OH)3, Gibbsite, and Kaolinite) are typically found in groundwater bedrock and 

streambed sediment.The schematic of the PHREEQC transport model for this scenario is 

shown in Figure 42. 

 

 

Figure 42 Model of Hg transport for a typical groundwater flow condition.  Simulations 

were performed for each individual sorbents (Fe(OH)3, Gibbsite and Kaolinite)  

 

Figure 43 (a) shows the THg profile as a function of flow distance. With Fe(OH)3 

sorbent, THg shows the sharp decrease in its concentration at 40 m, where the surface 

complexation between Hg and Fe(OH)3 occurs. The surface complexation between Hg 

and Fe(OH)3 is so strong that most of Hg was sorbed and became negligible after 40 m. 

Adding more than one type of sorbents, which is more representive of typical conditions 

in aqueous environments, increases the sorption capacity. However, since Fe(OH)3 has 

GW-135

1 = n 2 = n 4 = n3 = n 5 = n 10 = n

100 m

Advection (Groundwater velocity, v = 0.8 m/day) 

Dispersion (Groundwater dispersivity, αL = 1 m)

Background water solution 

Sorbents: 1 g of Fe(OH)3/Gibbsite/Kaolinite

Surface complexation
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strong Hg sorption capability, the surface complexation between Hg and a combination 

of Kaolinite, Gibbsite, Fe(OH)3 sorbents, is mainly influenced by the Fe(OH)3. 

 
(a) THg profile with different sorbents 

 

 
(b) Hg-species profile with 1 g of 

Kaolinite 

 
(c) Hg-species profile with 1 g of 

Gibbsite 

 

(d) Hg-species profile with 1 g of 

Fe(OH)3 

 
(e) Hg-species profile with 1 g of 

Kaolinite and Gibbsite 

 

(f) Hg-species profile with 1 g of 

Kaolinite, Gibbsite, and Fe(OH)3, 
 

Figure 43 The effect of surface complexation on Hg-species flow profiles for different 

sorbents (Fe(OH)3, Gibbsite and Kaolinite).The sorbents were applied to cells 4 and 5 (40 

and 50 m of flow distance) 
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For this study, the sorption capacity of sorbents are in the order Kaolinite < 

Gibbsite < Gibbsite + Kaolinite < Fe(OH)3 = Fe(OH)3 + Gibbsite + Kaolinite. The Hg-

species and pH profiles with each sorbent are shown in Figures 43 (b) to (f). 

It can be seen from Figures 43 (b) and (f) that water pH increases sharply between 

35-40 m. This is because of the effect of added Fe(OH)3. The logarithm of the surface 

complexation reaction constant, log K, of the reaction between H
+
and Fe(OH)3, 

(≡Hfo_sOH + H
+

 = ≡Hfo_sOH2
+
) is 7.29. This implies that the pH of water should 

increase in the presence of Fe(OH)3. However, after the surface complexation reaction 

between Hg and Fe(OH)3, pH drops to a constant value of 7. This is because some of the 

H
+
 is released back to the water when Hg complexes with Fe(OH)3. In the presence of 

Kaolinite, HgCl2 and HgClOH are sorbed and becomes negligigble after 55 and 70 m 

respectively. The same happens at 50 and 60 m in the case of Gibbsite. Final THg 

concentrations at 100 m are 9.7, 2.8, 2.0 and 0 nmol/L in the presence of 1 g of Kaolinite, 

Gibbsite, Kaolinite+Gibbsite, and Fe(OH)3, respectively.  

5.3.2.2 Typical surface water flow  

This section describes the modeling performed on the Hg fate and transport in a 

typical surface water flow conditon. The same water quality data used previously to study 

the groundwater condition (Table 40) were used here. The typical surface water flow 

parameters in Table 42, which were reported in literature, were used for the simulations 

in this section. The Hg fate and transport in a typical surface water condition were studied 

for 3 different scenarios: 1) without exchangers and sorbents; 2) with exchangers; and 3) 

with sorbents. 
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Table 42 Typical surface water flow parameters 

Parameters ORR area South Florida area 
Value 

used in 

this 

study 

u (m/d) 

12,000 - 17,000 (Loar et 

al., 2011and Vasquez, 

2008) 

20,000 – 47,000 for Kissimmee 

river (Campbell et al., 1995) 

432 - 800 for ENP area (Harvey et 

al., 2002) 

12,900 

αL (m) 

1-2,000 or more for 

typical river (Shen et al., 

2010) 

2 - 6 for ENP area (Harvey et al., 

2002) 
6 

DL (m
2
/d) 

12,000 – 10
7.5

 

(calculated using DL= 

αLu + D*) 

24,000- 10
7.9

 (calculated using DL= 

αLu + D*) 
77,400 

D* (m
2
/d) 

3x10
-8

- 3x10
-6

 (Shen et 

al., 2010) 
3x10

-8
- 3x10

-6
  3x10

-7
 

 

Scenario 1: Without exchangers and sorbents  

As previously mentioned, the flow parameters for a typical surface water flow 

condition  (Table 42) were used for this study. The travel distance was chosen to be the 

same as that employed for the groundwater modeling. The flow reach was100 m long and 

was divided into 10 cells for PHREEQC calculation. The schematic of the Hg transport 

model for this scenario is shown in Figure 44.  
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Figure 44 Model of Hg transport for a typical surface water flow condition 

 

The water flows from GW-135 through the reach without any interactions between Hg 

and the solid (exchanger/sorbent). PHREEQC calculated the Hg-species profile based on 

the water quality data and flow parameters that were provided (see Figure 45). 

 

Figure 45 Hg-species flow profile in a typical surface water flow condition 
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It can be inferred from Figure 45 that, with high velocity and dispersion, the Total 

Hg (THg) shows quite a conservative profile over the reach. The THg gradually reduces 

in concentration, presumably due to the effect of dispersion. There were only two Hg-

species (Hg(OH)2, HgClOH) that were observed throughout the flow distance. HgClOH 

was observed in the range of 10 to 30 m. but became negligible afer 30 m. The travel 

time of 11 min (for 100 m distance) was considerably quicker when compared to the 

transport in the groundwater flow (i.e., 125 days).  

Scenario 2: With exchangers: Illite, Montmorillonite, and Vermiculite 

The Hg fate and transport in a typical surface water flow environment was 

simulated with different exchangers (i.e., Illite, Montmorillonite and Vermiculite) that 

were individually added into cells 4 and 5 of the flow reach (Figure 46). This was to 

examine the effect of ion exchange of each exchanger on Hg fate and transport. The 

water quality and the travel distance were identical to scenario 1. The same type of 

exchangers and CEC used in the groundwater scenario were used for simulations herein. 

These were 1) Illite, CEC of 6.5 mol/L, 2) Montmorillonite, CEC of 15 mol/L, 3) 

Vermiculite , CEC of 26 mol/L and 4) Illite+Montmorillonite+Vermiculte, CEC of 47.5 

mol/L. Four simulations with different exchangers were conducted. The schematic of the 

transport model is presented in Figure 46. 
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Figure 46 Model of Hg transport for a typical surface water flow condition. Simulations 

were performed for each individual exchanger (Illite, Montmorillonite and Vermiculite) 

 

A significant difference was observed in the results obtained for surface water 

flow when compared to groundwater flow condition. The effect of dispersion on the 

concentration of Hg was more dominant when compared to the effect of ion exchange. 

There was no change in THg profiles when different exchangers were used along with the 

surface water flow condition of Table 42 ( u = 12,900 m/day and αL = 6 m). To further 

understand the effect of dispersion, a sensitivity analysis of Hg concentration to 

dispersivity along the travel distance was performed for 5 different conditions (Table 43). 

This was performed only for Vermiculite exchanger (Vermiculite has higher CEC 

compared to the other exchangers). 
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1 = n 2 = n 4 = n3 = n 5 = n 10 = n

100 m

Advection (Surfacewater velocity, u = 12,900 m/day) 

Dispersion (Surfacewater dispersivity, αL = 6 m)

Background water solution 

Exchanger: Illite/Montmorillonite/Vermiculite

Ion-exchange
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Table 43 Conditions used for sensitivity analysis of dispersion to exchange reaction 

between Hg and Vermiculite 

Condition U (m/day) αL (m) 
CEC of Vermiculite in 

cells 4 and 5 (mol/L) 

1 12,900 No dispersion No exchanger 

2 12,900 2 26 

3 12,900 6 26 

4 12,900 20 26 

5 12,900 100 26 

 

Results in Figure 47 show that for condition 1, without dispersion and ion 

exchange, a constant concentration of THg, i.e. 30 nmol/L, is obtained throughout the 

travel distance. For condition 2, with 2 m of dispersivity and 26 mol/L of CEC, the dip in 

concentration of THg obtained at cells 4 and 5 (where the exchanger was added) is due to 

the ion-exchange reaction. The concentration also gradually reduces during 70-100 m due 

to dispersion.  
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Figure 47 Effect of dispersion on the exchange reaction and Hg transport for surface 

water flow condition 

 

The THg concentration changes along the travel distance for conditions 3, 4, and 

5, which were 26 mol/L CEC of Vermiculite and dispersivity of 6 m, 20 m, and 100 m. 

There was no dip in concentration in cells 4 and 5 (where ion exchange is expected to 

take place) unlike that observed in condition 2. It can be inferred that, keeping all the 

other parameters constant, lower dispersivty (~ 2 m) is required to see the effect of ion 

exchange under surface water flow condition. Since , the dispersivity for typical surface 

flow condition is 6 m, it can be concluded that the Hg concentration as predicted by this 

model is dominated by dispersion instead of ion exchange.  

Scenario 3: With surface complexation: Fe(OH)3, Gibbsite, Kaolinite 

The water quality and flow parameters in this scenario were the same as those 

employed in scenarios 1 and 2. The goal was to determine the effect surface 

complexation on the Hg fate and transport. One g/L of different sorbents: Fe(OH)3, 
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Gibbsite, and Kaolinite, were individually added into cells 4 and 5 of the flow reach. The 

schematic of the transport setting is shown in Figure 48. 

 

 

Figure 48 Model of Hg transport for a typical surface water flow condition.  Simulations 

were performed for each individual sorbents (Fe(OH)3, Gibbsite and Kaolinite) 

 

Figure 49 (a) shows the THg profile along the flow distance. It was observed that 

the sorption capacity of sorbents is in the order Kaolinite < Gibbsite < Kaolinite + 

Gibbsite < Fe(OH)3 = Kaolinite + Gibbsite + Fe(OH)3. The Hg-species and pH profiles 

for each sorbent are shown in Figures 49 (b) to (f). 
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100 m

Advection (Surfacewater velocity, u = 12,900 m/day) 

Dispersion (Surfacewater dispersivity, αL = 6 m)

Background water solution 

Sorbents: 1 g of Fe(OH)3/Gibbsite/Kaolinite

Surface complexation
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(a) THg profile with different sorbents 

 

 
(b) Hg-species profile with 1 g of 

Kaolinite  

 
(c) Hg-species profile with 1 g of 

Gibbsite 

 
(d) Hg-species profile with 1 g of 

Fe(OH)3 

 
(e) Hg-species profile with 1 g of 

Kaolinite and Gibbsite 

 
(f) Hg-species profile with 1 g of 

Kaolinite, Gibbsite, and Fe(OH)3 

 

Figure 49 The effect of surface complexation on Hg-species flow profiles for different 

sorbents (Fe(OH)3, Gibbsite and Kaolinite).The sorbents were applied to cells 4 and 5 (40 

and 50 m of flow distance) 

 

The water pH in the presence of Fe(OH)3, as shown in Figures 49 (d) and (f), is 

expected to increase because of surface complexation of H
+
 and Fe(OH)3; but the reaction 
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between Hg and Fe(OH)3 reduces the pH, to a pH of 7 as shown in (d) and (f). A small 

drop in THg concentration was observed in the presence of Gibbsite, which is shown in 

(b) and (e). That could be due to the high surface complexation constant between Hg and 

Gibbsite. The surface complexation between Hg and Fe(OH)3 is also very strong. This 

explains why the Hg complexation is influenced by Fe(OH)3, when a mixture of 

Kaolinite+Gibbsite+Fe(OH)3 is used. The reaction between HgClOH and Kaolinite is 

stronger than that between HgClOH and Gibbsite, while Gibbsite can complex with 

Hg(OH)2 better than Kaolinite. 
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VI. MODEL APPLICATIONS, RESULTS AND DISCUSSION 

 

This section presents the application of the enhanced model to assess the 

geochemical processes, fate, and transport of Hg for the two field test-beds (ORR, and 

ENP). Using specific water quality data obtained from each site, the sensitivity analysis 

to pH and temperature of Hg-species was conducted in batch mode. For ORR test-bed, 

Hg transport in groundwater (Bear Creek Valley Regime) and surface water (EFPC) were 

investigated. For ENP test-bed, the Hg transport in the surface water of the Shark River 

Slough, was studied. The results yielded a better understanding of the fate and transport 

of Hg in these settings thereby aiding the selection of suitable restoration.  

 

6.1 ORR Test-Bed Simulations – Batch Mode 

In this section, the improved PHREEQC model was used to simulate the behavior 

of Hg in EFPC water located in the ORR area. The distribution of Hg species, the 

sensitivity analysis of Hg-species and saturation index (SI) of minerals to water pH and 

water temperature were investigated. The simulations were conducted using the EFPC 

water quality data which is shown in Table 44 (Dong et al., 2010). The ORR and EFPC 

soil characteristics (physical and chemical properties) are described in Appendix E. 
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Table 44 EFPC water quality data (Dong et al., 2010) 

Constituent Range 

pe 3.81 

pH 7.0 – 9.2 

Total Ca, mol/L 7.7 x 10
-4

 – 1.1 x 10
-3

 

Total Mg, mol/L 4.5 x10
-4

 – 4.8 x 10
-4

 

Total Na, mol/L 7.7 x 10
-4

 – 1.1 x 10
-3

 

Total K, mol/L 5.0 x 10
-5

 – 9.0 x 10
-5

 

Total Fe, mol/L 2.6 x 10
-8

 - 2.8 x 10
-8

 

Total Cl, mol/L 2.2 x 10
-4

 – 6.5 x 10
-4

 

Total HCO3, mol/L 2.0 x 10
-3

 – 2.1 x 10
-3

 

Total NO3, mol/L 1.0 x 10
-4

 – 2.8 x 10
-4

 

Total PO4, mol/L 2.5 x 10
-6

 – 1.2 x 10
-5

 

Total Zn, mol/L 1.6 x 10
-7

 – 2.6 x 10
-7

 

Total Cu, mol/L 1.2 x 10
-8

 – 2.8 x 10
-8

 

Total Cd, mol/L 5.2 x 10
-8

 – 1.3x 10
-9

 

Total Pb, mol/L 6.1 x 10
-10

 – 1.3 x 10
-9

 

Total Hg, mol/L 5 x 10
-11

 – 4 x 10
-10
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6.1.1 Hg Speciation Distribution 

The Hg species distribution in EFPC using the improved PHREEQC model and 

the EFPC water quality data of Table 44 is shown in Figure 50. 

 

Figure 50 Hg species distribution in EFPC water 

 

The Hg(OH)2 is the dominant species at typical EFPC water pH (black box shown 

in Figure 50, pH ~ 7.0 - 9.2). The second dominant species is HgClOH. Hg(HO)2 

concentration is low at low pH, while HgCl2 dominates at low pH (0-6). The Hg(OH)2 

concentration increases with water pH (0-6), while HgCl2 decreases. The higher 

concentration of Hg(OH)2 at high pH is due to the increase in OH with the water pH.  

6.1.2 Sensitivity Analysis of Hg Species to Water Temperature and pH 

The sensitivity of Hg speciation in EFPC to water temperature and pH was 

studied at temperatures in the range of 5-35 °C and pH 2-10 (Figure 51). 

m
o
l/
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Figure 51 Hg species sensitivity to temperature (5-35 °C) and pH (2-10) (unit in log 

mol/L); black box shows EFPC water pH range under oxidizing condition 
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It can be seen from Figure 51 that the formation of Hg-OH and Hg-CO3 species 

increases with water temperature. An increase in water temperature does not favor the 

formation of Hg-Cl species. An increase in water pH increases the formation of Hg(OH)2 

and Hg(OH)3
-
. However, for Hg(OH)

+
, HgOHCl, and HgCO3, the concentrations 

increased with pH between 2-7 and declined for pH > 7. Low water pH (pH 2-6) does not 

have any influence on Hg-Cl concentration. However, a decrease in its concentration is 

observed for pH > 6. 

6.1.3 Sensitivity Analysis of Mineral Saturation Index to Water 

Temperature and pH 

The sensitivity analysis to water temperature and pH for the mineral precipitation 

at EFPC water conditions was conducted for temperature range of 5-35 °C and for pH of 

2-10 (Table 44). Figure 52 shows the effect of water temperature and pH on the SI of 

dominant precipitated minerals in EFPC water. The SI of Ferrihydrite, Goethite, 

Magnesioferrite, and Hematite increases with water temperature. However, temperature 

does not affect the formation of FCO3Apatite, Lepidocrocite, Hydroxylapatite, and 

Arogonite. Increase in water pH favors the formation of all the above minerals since their 

SI increases with water pH. Within the EFPC water conditions, pH 7.0-9.2 and 

temperature 25 °C, water is supersaturated with Ferrihydrite, Goethite, Magnesioferrite, 

Hematite, FCO3Apatite, Lepidocrocite, and Hydroxylapatite. Hence these minerals are 

excpected to precipitate at these conditions. At pH 8, the EPFC water becomes saturated 

with Arogonite and its precipitation takes place. 
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Figure 52 Sensitivity of mineral precipitation to water temperature and pH in EFPC water 

conditions 
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6.2 ORR Test-Bed Simulation – Groundwater Transport Mode 

6.2.1 Hg in Groundwater Transport: Bear Creek Valley 

The transport of Hg in Bear Creek Valley, which is located in the ORR area is 

presented in this section. Data was collected from 4 monitoring wells: GW-916, GW-923, 

GW-363, GW-639. These wells were selected for the study because of 1) the availability 

of Hg data and 2) the wells were located in the main groundwater flow path as defined by 

the surface water table elevations. The locations of selected monitoring wells are shown 

in Figure 53. 

 

 

Figure 53 Location of selected wells for Hg transport in Bear Creek Valley, Oak Ridge, 

TN (modified after Elvado Environmental LLC, 2009)  

 

The geology and soil bedrock of the site consist of shale, limestone, siltstone, and clay. 

The soil consists of different minerals, such as Ferryhidrite, Gibbsite, Geothite, Illite and 

Kaolinite, etc. (Atre and Carpenter, 2010; Driese et al., 2001) (See Appendix E for soil 

characteristics); the CEC of 130 mmol/L was reported. The background water is a Ca-

Mg-HCO3 water. The average groundwater velocity of 0.66-1.0 m/day (Jago et al., 1995) 

GW-916

GW-923

GW-363

GW-639

Bear Creek Valley

Monitoring well

Selected well

960 Water level (ft)
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and the dispersivity of 1 m (Stafford et al., 1998; Schulze-Makuch, 2005; Kelkar et al., 

2006) were used in simulations herein. The water quality data at the selected wells and 

the flow parameters of the site that were used for the simulation are respectively shown in 

Tables 45 and 46. 

Table 45 Water quality data used for Hg transport study in Bear Creek Valley (Elvado 

Environmental LLC, 2009 and 2011) 

Parameter GW-916 GW-923 GW-363 GW-639 

Groundwater Elevation 

(ft) 
998 983 953 930 

Dissolved Oxygen 

(mg/L) 
0.2 - 0.9 0.3 - 1.3 2.0 - 4.0 3.8 

Oxidation/Reduction 

(mV) 
-105 - 15 -10 – 19 31 - 127 78 – 98 

Temperature (°C) 13.9-14.3 15.6 - 16.3 14.5 - 21.5 12.3 – 17 

pH 7.1 – 8.0 7.2 - 6.2 8.6 - 9.3 8.0 – 9.0 

Aluminum (mg/L) - - 26.6 28.0 

Calcium (mg/L) 35.7-43.1 48.3 - 33.8 1.0 - 1.2 0.9 - 0.8 

Magnesium (mg/L) 5.8-47.0 18.0 – 10.0 0.26 - 0.49 0.2 - 0.2 

Sodium (mg/L) 24.6-32.0 26.4 - 4.1 1.04 - 1.18 1.9 - 2.1 

Iron (mg/L) 1.3-1.6 1.7 - 28.3 0.05 - 0.07 0.1 - 0.2 

Mercury (ng/L) 110 – 100 72 – 130 80 - 91 80 – 90 

SI of Cinnabar -9.6 5.9 -36.8 -41.8 

SI of Fe(OH)3 -1.2 -1.7 2.9 3.1 

SI of Gibbsite - - 0.3 0.1 

 

Table 46 Groundwater flow parameters used for Hg transport in Bear Creek Valley 

simulations (Jago et al., 1995; Kelkar et al., 2006) 

Parameters ORR area 
Value used in this 

study 

v (m/d) 0.6-1.0 (Jago et al., 1995) 0.8 

αL (m) 1-2 (Kelkar et al., 2006) 1 

DL (m
2
/d) 0.6 – 1.2 (calculated using DL= αLv + D*) 0.8 

D* (m
2
/d) 3x10

-9
 3x10-9 
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The analysis performed on the water quality data in Table 46 using the enhanced 

PHREEQC model indicates that  the GW-923 water is supersaturated with Cinnabar (SI = 

5.9). In other words, it supports the occurrence of deposited Cinnabar mineral at that 

location. This also indicates the potential that the dissolved Cinnabar can be released and 

become a source of Hg. The analysis also suggests that GW-363 and GW-639 waters are 

supersaturated with Gibbsite and Fe(OH)3. In order to better understand the transport of 

Hg in the site, a number of simulations were made, which are explained next. These 

simulations were based on the following general assumptions: 

1) Groundwater from well 916 (Table 45) flows through the Ca-Mg-HCO3 

background water type to well 639 over 975 m of travel distance. 

2) The transport model in PHREEQC is divided in to 50 cells each of 20 m 

length. 

3) The flow parameters in Table 46 are used for the simulation. 

4) The dissolution of Cinnabar at GW-923 constantly releases 120 ng/L of 

dissolved Hg. 

5) A CEC of 130 mmol/L is the ion exchange capacity of the bedrock applied for 

all the cells to assess ion-exchange. 

6) The Fe(OH)3 and Gibbsite minerals are present at wells 363 and 639 (cells 34, 

35 and 49), which is indicated by the SI of the minerals in Table 45. These 

minerals are considered as the sorbents that can complex with Hg by the role 

of surface complexation.  
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7) Simulation scenarios were conducted for 1) 1 g of the sorbents: Fe(HO)3, 

Gibbsite, and Kaolinite in cells 34, 35 and 49 and 2) different combinations of 

sorbents Fe(HO)3 and Gibbsite in cells 34, 35 and 49.  

A schematic of the Hg transport situation for this site is shown in Figure 54. 

 

 

Figure 54 Hg transport model for Bear Creek Valley 

 

6.2.1.1 Scenario 1: Hg transport with 1 g/l of different sorbents for surface 

complexation reaction 

The results of the Hg transport simulations based on the assumptions mentioned 

earlier are shown in Figure 55. Without the presence of sorbent, the dissolved total Hg 

(THg) profile matches the concentration at wells GW-916 and 923. However, the 

measurements taken downstream (GW-363 and 639) are significantly lower than that 
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Advection (Groundwater velocity, v = 0.8 m/day) 
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Surface complexation
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predicted by the model (assuming no sorbent was present). It can be inferred that sorbents 

were present downstream which reduces the concentration of Hg in water. This 

simulation confirms, to a certain extent (based on the good correlation obtained at the 

first two wells), the “validity” of the assumptions 4 and 5 (CEC value and rate of Hg 

release due to the dissolution of Cinnabar). 

 

 

Figure 55 Dissolved THg transported in the presence of three different sorbents, 

individually present in cells 34, 35 and 49, at Bear Creek Valley 

 

It should also be noted that when the sorbents were added, strong surface 

complexation occurred between dissolved THg and Fe(OH)3 and led to a reduction in 

concentration of Hg at GW-363 and GW-639. With 1 g of Fe(OH)3 at cells 34, 35 and 49, 

the dissolved THg appears to be underestimated compared to the observed data. Applying 

1 g of Gibbsite into those cells also indicates an underestimation of THg at GW-363, 

while over estimation is obtained at location of GW-639. With 1 g of Kaolinite in the 

Fe(OH)3
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same cells, the model shows a slight overestimation of THg at both wells GW-363 and 

GW-639. 

A sensitivity study was also conducted for CEC. However, CEC did not show any 

significant effect on THg concentration. This seems to be because of the low exchange 

constant (log K) for Hg at low CEC values.   

6.2.1.2 Scenario 2: Hg transport using a combination of sorbents for 

surface complexation reaction 

This scenario was conducted to determine the optimum amount of sorbents 

present at GW-363 and 639 that will give a good correlation between the simulation and 

observed data. The optimization was achieved by performing several simulations with 

different amounts and combinations of sorbents. The optimum amount of sorbents was 

found to be 4 and 5 mg of Gibbsite and Fe(OH)3, respectively, at GW-363 and 1 g and 5 

mg of Gibbsite and Fe(OH)3, respectively, at GW-639. The results are shown in Table 47 

and Figure 56. 

Table 47 Optimum amount of sorbents at GW-363 and GW-639 

Sorbents Cells 34-35 (GW-363) Cell 49 (GW-639) 

Gibbsite 4 mg 1 g 

Fe(OH)3 5 mg 5 mg 
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Figure 56 Dissolved THg transported in the presence of two different sorbents, 

simultaneously present in cells 34, 35 and 49, at Bear Creek Valley 

 

Figure 56 shows that THg concentration obtained for the enhanced model 

simulation, using optimized amounts of sorbents for surface complexation. The result 

provides a good match with observed data. With the optimum amount of sorbents, the 

enhanced model was then used to estimate the distribution of Hg-species along the main 

flow path. The comparison of Hg-species and pH profiles between the model results and 

observed data is shown in Figure 57. 

It can be observed in Figure 57 that the model results match well with the 

observed data for most of the Hg-species and the pH profile along the flow distance. The 

difference in concentration between the Hg-species at each location is related to the pH of 

that location. At GW-923 where pH is neutral, HgCl2 is dominant, while the second 

dominant species is HgClOH. With an increase in pH, HgCl2 decreases. HgClOH shows 

its peak at pH 7.5 at a distance of 400 m. HgCl2 and HgClOH become relatively low at a 
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farther distance when pH is greater than 7.5, which favors the occurrence of Hg(OH)2. 

Hg(OH)2 is the dominant species at GW-363 and 639. 

 

 

Figure 57 Comparison of Hg-species and pH profiles along the flow distance between the 

model results and observed data. The points represent observed data and the lines 

represent model results  

 

The model results show a peak of HgClOH species at 400 m. This is consistent 

with the pH value (7.5) observed at this location (HgClOH dominates other Hg species at 

pH = 7.5).  

 

6.3 ORR Test-Bed Simulation – Surface Water Transport Mode 

This section presents the Hg transport study in EFPC where the Hg contamination 

in the creek water has been of concern since the 1980s. The major cause of this 

contamination was the accidental spills and discharges of 128,000±35,000 kg Hg to the 

EFPC that occurred during the period of operation of the Y-12 plant (1950-1963) (Brooks 
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and Southworth, 2011; Dong et al. 2010). Many attempts have been made since then to 

reduce the mercury concentration in EFPC. In 2011, an 85% decrease from ~2000 ng/L 

in 1980s was reported (Brooks and Southworth, 2011). However, throughout of EFPC, 

the Hg concentration was reported to be in excess of the 0.051 µg/L criterion (TDEC, 

2008). The Hg concentrations obtained from the monitoring stations were 0.5 µg/L at 

EFK 23.4 located at the EFPC headwater, 0.3 µg/L at EFK 18.3 (~5 km downstream 

from EFPC headwater), and 0.25 µg/L at EFK 13.8 (~10 km downstream from EFPC 

headwater) (Brooks and Southworth, 2011; TDEC, 2008). EFK is an operational code 

used to identify and name monitoring stations along the creek. 

 

 

Figure 58 EFPC and Y-12 map (modified after www.esd.ornl.gov) 
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6.3.1 Hg in Surface Water Transport: Hg Reduction Load to EFPC 

In order to achieve the concentration criterion, Hg daily load reduction strategy 

was used (Brooks and Southworth, 2011; Loar et al., 2011). The loading of total Hg to 

EFPC was estimated to exceed 100 g/day in 1985. Hg loading decreased to 15 g/day by 

1993 (Brooks and Southworth, 2011; Loar et al., 2011) and 1-10 g/day by 2007 (TDEC, 

2008). Therefore, in this section the simulations were conducted to test how long the Hg 

concentration in EFPC may take to reduce to the concentration criterion of 0.051 µg/L 

with respect to a range of Hg loadings (2.5 g/day, 1.5 g/day and 0.5 g/day). The PHAST 

integrated model and the developed PHREEQC database were used for the simulations. 

The EFPC is approximately 5-9 m wide and 30 km long (Loar et al., 2011) (Figure 58). 

However, the modeling domain in this study was a 5 m x 10 km (width x length) stretch, 

which covers the stations EFK 23.4, EFK 18.2, and EFK 13.8. The modeling domain was 

selected based on the availability of water quality data. The Hg transport was simulated 

with the following assumptions: 1) The head boundary (water level) at location EFK 23.4 

was 1 m and 2) the flow occurs only in forward direction (from EFK 23.4 to EFK 13.8). 

The water quality data, at different locations (EFK 23.4, EFK 18.2, EFK 13.8), were 

collected from previous studies (Loar et al., 2011; Dong et al., 2010; Brooks and 

Southworth, 2011) and used in the model (Table 48). The surface complexation [1 mg/L 

of Fe(OH)3] and ion-exchange (CEC = 0.01 mol/L) properties were applied to all the 

model domains. The flow parameters collected from Loar et al. (2011) and Vasquez 

(2008) studies were used in the model (Table 49). 
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Table 48 EFPC surface water quality at different monitoring stations (ion concentrations 

in mg/L) (Loar et al., 2011; Dong et al., 2010; Brooks and Southworth, 2011) 

Parameters 
Stations 

EFK 23.4 EFK 18.3 EFK 13.8 

Temperature, °C 25 25 25 

pe 3.81 3.81 3.81 

pH 7.0 – 9.2 7-9.2 7-9.2 

Total Ca 44 37.4 30.8 

Total Mg 11.66 11.29 10.93 

Total Na 25.3 21.505 17.71 

Total K 3.51 2.73 1.95 

Total Fe 0.0015 0.0015 0.0015 

Total Cl 23.01 15.399 7.788 

Total HCO3 128.1 125.05 122 

Total NO3 17.36 11.78 6.2 

Total PO4 1.1388 0.6880 0.23 

Total Zn 0.0169 0.0137 0.0105 

Total Cu 0.0017 0.0013 0.0008 

Total Cd 0.0001 0.003 0.0058 

Total Pb 0.0002 0.0002 0.0001 

Total Hg 0.0005 0.0003 0.00025 

CEC (mol/L) 0.01 0.01 0.01 

Sorbent [mg of (FeOH)3/L] 1 1 1 
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Table 49 Transport parameters used for Hg transport study in EFPC 

Parameters Values 

Model Domain 10 km x 5 m 

Velocity, m/d 12,960 (Vasquez, 2008; Loar et al., 2011)  

Loading rate, cfs (cms) 11 (0.31) (Vasquez, 2008; Loar et al., 2011) 

Dispersivity, m 6 (Loar et al., 2011) 

Diffusivity, m
2
/s 1x10

-9
 (Loar et al., 2011) 

Number of Grid in X axel 100 

Number of Grid in Y axel 5 

Number of Grid in Y axel 1 

Grid size 0.1 km x 1 m 

Grid for EFK 23.4 station (X1, Y1, Z1: X2, Y2, Z2) 
0, 0, 0 : 50, 5, 1 it is associated with water 

quality from station EFK 23.4 

Grid for EFK 18.3 station (X1, Y1, Z1: X2, Y2, Z2) 
50, 0, 0, : 70, 5, 1 it is associated with water 

quality from station EFK 18.3 

Grid for EFK 13.8 station (X1, Y1, Z1: X2, Y2, Z2) 
70, 0, 0, : 100, 5, 1 it is associated with 

water quality from station EFK 13.8 

Initial Hg concentration at EFK 23.4 station, µg/L  0.5 

Initial Hg concentration at EFK 18.3 station, µg/L 0.3 

Initial Hg concentration at EFK 13.8 station, µg/L 0.2 

Ion-exchange: CEC 1 mmol/L All domain 

Sorbent: 1mg Fe(OH)3/L All domain 

 

The transport model employed an EFPC average hydraulic retention time of 0.25 

day. Figure 59 shows the model domain and the initial concentrations of Hg in EFPC at 

different locations. The Hg transport simulations were calculated at 3 different Hg 

loading rates (2.5 g/day, 1.5 g/day and 0.5 g/day). These rates were used to define a range 

of possible Hg pollution prevention strategies. 
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Figure 59 Initial concentration of Hg in EFPC water at different monitoring stations 

 

6.3.1.1 Scenario 1: Hg loading of 2.5 g/day at the source 

Simulation scenario 1 was made with a 2.5 g/day of Hg loading at the source 

(EFK 24.3) in the EFPC. The simulation was conducted to predict the time that takes to 

reduce the Hg concentration in the creek to meet the concentration criterion of 0.051 

µg/L. The simulation was started with initial background Hg concentrations in the creek 

as 0.5 µg/L, 0.3 µg/L, and 0.2 µg/L at EFK 23.4, 18.3, and 13.8, respectively.  

 

5
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Figure 60 Transport of dissolved Hg in EFPC water with loading rate of 2.5 g/day (from 

EFK 24.3 to EFK 13.8) 
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In Figure 60, at a Hg mass loading of 2.5 g/day, (flow rate is 11 cfs, Hg 

concentration is 9.3 x 10
-5

 mg/L), the simulation shows that the concentration at EFK 

24.3 becomes lower than the downstream concentrations (EFK 18.3 and 13.8) by year 13 

(not shown in the Figure). By year 15, the total dissolved Hg concentration at EFK 24.3 

decreased approximately to 0.15 µg/L (from an initial concentration of 0.5 µg/L). The 

concentrations at EFK 18.3 and EFK 13.8 did not show any significant change. However, 

a reduction in total dissolved Hg concentrations at EFK 18.3 and 13.8 are observed in 

year 30 (0.15 µg/L). Hg concentrations of less than 0.1 µg/L for the entire model domain 

are reached by year 45. These are 0.09, 0.09 and 0.1 µg/L at EFK 24.3, 18.3, and 13.8, 

respectively. 

It also can be seen in Figure 61 that the total dissolved Hg concentration in the 

EFPC shows big reduction during years 10 and 25 (~100% reduction at EFK 24.3 and 

~200% reductions, at EFK 18.3 and 13.8). However, the reduction slows down in the 

later years; in fact, reduction rates between years 35, 45, and 60 are very small. The result 

shows that the total dissolved Hg reaches in a constant concentration of 0.08 µg/L by year 

60. The model result also suggests that, with 2.5 g/day of Hg mass loading to the EFPC, 

the Hg concentrations will not meet the criteria of 0.051 µg/L. 
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Figure 61 Total dissolved Hg concentration along the domain with Hg mass loading of 

2.5 g/day 

 

6.3.1.2 Scenario 2: Hg loading of 1.5 g/day at source 

In simulation scenario 2, the Hg mass loading rate to the EFPC was reduced to 1.5 

g/day. The simulation was conducted to predict the time that took to reduce the Hg 

concentration in the creek to criteria concentration of 0.051 µg/L. The simulation started 

with initial background Hg concentrations in the creek of 0.5 µg/L, 0.3 µg/L, and 0.2 

µg/L at EFK 23.4, 18.3, and 13.8, respectively.  

The results from using a Hg mass loading to 1.5 g/day in the simulation (see 

Figure 62) showed that the dissolved Hg concentration at EFK 24.3 becomes lower than 

the downstream concentrations (EFK 18.3 and 13.8) by year 9 (not shown in the figure). 

By year 15, Hg concentrations at EFK 24.3 are predicted to be about 0.15 µg/L (from 0.5 

µg/L), extending over a larger area compared to scenario 1 (0.5 km
2
 for Scenario 1, and 1 

km
2
 for scenario 2). Total dissolved Hg concentrations at EFK 18.3 and EFK 13.8 did not 
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show a significant change after 15 years. However, the reduction in total dissolved Hg 

concentrations at EFK 18.3 and 13.8 is expected in year 25 to reach 0.15 µg/L. 

Concentrations of less than 0.1 µg/L for the entire model domain are obtained by year 35; 

they are 0.06, 0.07 and 0.08 µg/L at EFK 24.3, 18.3, and 13.8, respectively. It can also be 

noted in Figure 63 that the total dissolved Hg concentration in the EFPC shows a big 

reduction during years 10, 25, and 35; the reduction percentage of Hg concentrations at 

all stations, between years 10 and 25 is in the range 100% - 200%; and is the same for 

years between years 25 and 35 is in the range is 25% - 50%. The reduction rate slows 

down in later years. The reduction rate between years 45 and 60 is very low with similar 

concentrations. Results show that the total dissolved Hg reaches its constant 

concentration of 0.051 µg/L (EFPC criterion) by year 45. To summarize, with a 1.5 g/day 

of Hg loading to the EFPC, the total dissolved Hg concentration within the model domain 

is predicted to decrease, meeting the criteria of 0.051 µg/L by year 45. 
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Figure 62 Transport of dissolved Hg in EFPC water with Hg mass loading of 1.5 g/day 

(from EFK 24.3 to EFK 13.8) 
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Figure 63 Total dissolved Hg concentration along the domain with Hg mass loading of 

1.5 g/day 

 

6.3.1.3 Scenario 3: Hg loading of 0.5 g/day at the source 

In simulation scenario 3, the Hg loading into the EFPC was set at 1.5 g/day. The 

simulation was conducted to predict the time that took to reduce the Hg concentration in 

the creek to criteria concentration 0.051 µg/L. The simulation started with initial 

background Hg concentrations in the creek, which were of 0.5 µg/L, 0.3 µg/L, and 0.2 

µg/L at EFK 23.4, 18.3, and 13.8, respectively.  
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Figure 64 Transport of dissolved Hg in EFPC water with Hg mass loading of 0.5 g/day 

(from EFK 24.3 to EFK 13.8) 
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In Figure 64, with a Hg mass loading of 0.5 g/day, the simulation result showed 

that the concentration at EFK 24.3 is diluted and is lower than the downstream 

concentrations (EFK 18.3 and 13.8) by year 7 (not shown in the figure). In year 10 the 

total dissolved Hg concentration at EFK 24.3 reaches about 0.15 µg/L (from 0.5 µg/L), 

while the concentrations at EFK 18.3 and EFK 13.8 did not show any significant change 

with respect to the previous scenarios. However, the reduction in total dissolved Hg 

concentrations at EFK 18.3 and 13.8 reached 0.15 µg/L by year 20. Concentrations less 

than 0.1 µg/L for the entire model domain were estimated by year 30; they were 0.06, 

0.07, and 0.08 µg/L at EFK 24.3, 18.3, and 13.8, respectively.  

 

 

Figure 65 Total dissolved Hg concentration along the domain with Hg mass loading of 

0.5 g/day 
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years 10
 
and 25

 
is in the range 100% - 230%. The same reduction is predicted between 25 

and 35 years, in the range of 25% to 70%. The reduction rate reduces in later years. The 

reduction rates between years 35, 45 and 60 are low, with similar concentrations. Results 

also show that the total dissolved Hg can reach its constant concentration of 0.051 µg/L 

(EFPC criterion) by year 35. It can be summarized that with a 0.5 g/day of Hg loading 

into the EFPC, Hg concentrations within the model domain should decrease and meet the 

criterion of 0.051 µg/L by year 35. 

 

6.4 ENP Test-Bed Simulations – Batch Mode 

For the ENP test-bed, the averaged values of surface water quality that were 

collected at ENP station P33 over ten years (2001-2011), were employed to assess Hg 

speciation using the enhanced PHREEQC model. The water quality data was obtained 

from the DBHYDRO website.The data showed wide variations in major cations and 

anions in the ENP, depending on the season. Although, various water chemical 

constituents were measured at this station, DOC data was not available. A vast number of 

studies indicated that, for ENP, DOC plays an important role on Hg fate. This is because 

of the abundance of existing of DOC in that setting and the strong binding constant of Hg 

with the Thiol ligand or the reduced sulfur ligand (RS
-
) present in DOC. Therefore, DOC 

and its RS
-
 content must be considered and accounted for the Hg-speciation study with 

ENP waters. Although, there was no data available for DOC at P33 station, the DOC 

concentrations in this study were calculated using a correlation between total suspended 

solid (TSS) and DOC using data obtained from Cai et al. (1999) (Figure 66).  
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Figure 66 Relationship between the concentration of total suspended solid and DOM in 

ENP water (Cai et al., 1999) 

 

The linear relationship between TSS and DOC, Y = 4.38X + 13.58 where Y is 

DOC (mg/L) and X is TSS (mg/L), calculated using data in Cai et al. (1999) was used to 

estimate the DOC concentration at station P33. With this relationship, the calculated 

DOC at P33 ranged between 17-153 mg/L. The average DOC concentration over 11 

years was estimated to be 31 mg/L. The average DOC value (31 mg/L) was consistent 

with the data reported by Reddy and Aiken (2001) and this value was used for this study. 

The ENP soil characteristic data (physical and chemical properties) are described in 

Appendix F.  

The calculated DOC concentrations were then used to calculate the RS
-
 content in 

DOC using an equation proposed by Dong et al. (2010). The calculated RS
-
 ranged 

between 7.3 – 24.2 x 10
-5

 mg/L, with an average of 8.6 x 10
-5

 mg/L. The average values 

of surface water quality data of ENP, including calculated DOC and RS
-
, used in this 

study are shown in Table 50.  



 

165 

Table 50 ENP surface water quality data at P33 station (during 2001-2011) (mg/L for 

concentration, °C for temperature) (DBHYDRO) 

 

Constituents Range Average Value 

Temperature 9.0-30.7 23.76 

pH 7.0-8.1 7.47 

DO 0.8-9.1 4.20 

Alkalinity HCO3
-
 53-277 179.09 

Total Ca 39.8-118.3 59.48 

Total Cl 14.3-108 54.81 

Total PO4 0.003-0.075 0.0079 

Nitrate NO3
-
 0.005-0.127 0.029 

Nitrite NO2
-
 0.002-0.011 0.0035 

Total K 0.8-5.3 3.12 

Total Na 10.3-66.6 36.26 

Total Mg 3.9-17.1 10.48 

Total SO4 0.6-239 9.26 

Total SS 1-32 3.98 

DOC 17.96-153.89 31.05 

*RS
-
 7.3-24.2 x 10

-5
 8.6 x 10

-5
 

Total Hg 0.7-5.9 x 10
-6

 2.023x10
-6

 

*RS- represents the reduced sulfur was estimated by the equation proposed Dong et al., 2010)  
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6.4.1 Hg Speciation Distribution 

The ENP surface water quality data at P33 station, shown in Table 50, was used 

in the simulations. The speciation distribution of Hg in the ENP surface water is shown in 

Figure 67. 

 

Figure 67 Hg speciation in ENP surface water. The black box represents the pH range of 

ENP surface water (pH 7.0-8.2) 

 

It can be seen from Figure 67 that most of Hg(II) binds with the RS
-
 content in the 

DOC. The Hg(RS)
+
 species is at least ten orders of magnitude higher than other inorganic 

Hg. This is because the reaction constant (log K = 28.5) of Hg(RS)
+
 is higher than those 

of Hg-inorganic (Cl
-
, OH

-
, CO3

-
, SO4

2-
, etc.) complexation. 

6.4.2 Sensitivity Analysis of Hg Species to Water Temperature and pH  

The sensitivity of ENP Hg species to water temperature and pH was studied for a 

range of temperatures (5-35 °C) and pH (2-10) (Figure 68).  
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Figure 68 ENP Hg species sensitivity to temperature (5-35 °C) and pH (2-10). The black 

box shows the ENP water pH range 

 

The formation of Hg-Cl and Hg-OH species decreases with increase in water 

temperature, while higher temperatures favor the formation of Hg-CO3 species (Figure 

68). The water pH does not affect the formation of Hg-Cl species; however, the 

concentration of Hg-OH species shows a steady increase with water pH. This is because 

higher pH promotes the formation of OH
-
 ion. The concentration of Hg-CO3 species 
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increases sharply between pH 2-6. The rate formation of  HgCO3 slightly decreases 

between pH 6-10. However, the dominant Hg species, Hg(RS)
+
, did not show sensitivity 

to water pH and water temperature.  

6.4.3 Sensitivity Analysis of Mineral Saturation Index to Water 

Temperature and pH 

The sensitivity analysis of water temperature and pH on the mineral precipitation 

in ENP surface water condition was conducted for temperature ranges of 5-35 °C and for 

water pH range of 2-10.  

Figure 69 shows the effect of water temperature and pH on the SI of dominant 

minerals in ENP water. The SI of Calcite, Aragonite, Dolomite, and Huntite increases 

with water temperature. However, temperature does not affect the formation of 

Ca(PO4)3OH and Magnesite. The water pH favors the formation of all the above minerals 

since the SI increases with water pH. An increase in water pH increases the precipitation 

of CO3 minerals (Calcite, Aragonite, Dolomite, Huntite, and Magnesite minerals). 

Formation of Ca5(PO4)3OH mineral also increases with pH because an increase in water 

pH favors the production of OH
+
 ion. From Figure 69, it can be concluded that at typical 

ENP water condition (i.e., pH 7-8.2 and temperature = 23.4 °C), water is expected to be 

supersaturated with Calcite, Aragonite, Dolomite, and Ca5(PO4)3OH minerals.  
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Figure 69 Sensitivity of the mineral precipitation for ENP water with water temperature 

and pH 

 

6.4.4 Sensitivity to Salinity on Inorganic Hg Speciation 

For ENP test-bed, seawater intrusion becomes an important variable that can 

affect water quality. The fate of Hg and Hg-species distribution is expected to be affected 

by this variable as well. In this section, the sea and fresh water mixing model was used in 

order to predict and simulate the Hg-species distribution at various salinity contents 
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(Bloom and Crecelius,1983; Conaway et al., 2003; Grassi and Netti, 2002). The 

freshwater water quality data collected from P33 station, in Table 50, (without DOC) was 

used for analyzing the the mixing with seawater. The typical seawater water quality data 

obtained from DBHYDRO, shown in Table 51, was used for the simulations. Simulations 

were conducted for various percentages of the seawater contents in the mixtures. The Hg 

complexation in the mixtures was then investigated.  

Table 51 Seawater data (temperature in ˚C, ion concentration in mg/L) (DBHYDRO) 

Constituent Value 

pH 8.2 

Pe 8.4 

Density 1.0 

Temperature 25 

Total Ca 412.3 

Total Mg 1291.8 

Total Na 10768 

Total K 399.1 

Total Cl 19353 

Alkalinity as HCO3
- 141.7 

Total SO4 2712 

 

The Hg species distribution plotted against salinity content (‰) in the mixtures is shown 

in 1-D graphical plot (Figure 70). Figure 71 shows the 3-D graphical plots between 
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concentration of Hg-species, salinity content (‰), and percentage of seawater content in 

the mixtures. 

 

 

Figure 70 Distribution of Hg-species at various salinities (‰)  

 

The mixing simulations of fresh and seawater yielded Figures 70 and 71, which describe 

the effect of salinity on the relative distribution of Hg-species. The figures depict how the 

different Hg-species are influenced by Cl
-
 concentration. At low salinity (i.e., low Cl

-
 

concentrations) species formation is predicted to be dominated by HgCl2; at higher 

salinities, HgCl2 declined and HgCl3
-
 and HgCl4

2-
 increased. The overall implication of 

the above effect is that, salinity significantly impacts the relative distribution of Hg-

species and thus the mobilization of Hg. 
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Figure 71 The 3-D graphical distribution of Hg-species as function of salinity (‰)  
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6.4.5 Hg-S Complexation and the Production of MeHg 

It was mentioned earlier that Hg binds strongly with the RS
-
 content in DOC. The 

distribution of Hg species (Figure 72) that was estimated using the water quality data in 

Table 50 shows that Hg-DOC complexation (represented by Hg(RS)
+
 species) is the 

dominant species. Many studies have also reported that the SO4 content in water, 

especially in reducing water condition where S
6+

 is reduced to S
2+

, is the parameter that 

triggers the production of MeHg (Bates et al., 2002; Jeremiason et al., 2006; Wang et al., 

2009; Weaver et al., 2008; Wnalin et al., 2007). In order to understand the water quality 

conditions that favor the complexation between Hg and Sulfur, which can lead to the 

methylation of Hg, the Hg species distribution at various redox values in ENP water was 

evaluated (using the water quality data at P33 station, which is shown in Table 50); the 

results are depicted in Figure 72. 

 

 

Figure 72 Hg species distribution at various pe in ENP water 
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Figure 72 then describes the Hg-S species that are estimated to form in water in a 

reducing condition at a pe from -2 to -4, with HgHS2
-
 as the dominant species.  

In order to evaluate a critical ENP area, where the MeHg is potentially formed, 

ENP water quality data, including SO4
 
and DO concentrations, at different locations were 

collected.The objective of this aspect of the study was to investigate the location of ENP 

areas where the probability for MeHg formation is higher. Thus, that identification can be 

used to support further research and/or protection efforts. 

The ENP critical area is shown with a red boundary line in Figure 73. The ENP 

area is marked by the green boundary line and is adjacent to the Water Conservation Area 

(WCA is shown in blue boundary line). The area was divided into 21 sub-areas as shown 

in Figure 74. The water data collected from DBHYDRO website (2000-2008) at the 

monitoring stations located in each sub-area was considered representative of the water 

quality in that sub-area. The water quality data is documented in Table 52.  

Table 52 illustrates the SO4 concentrations at the different sub-areas. The 

concentrations are in the range 6.0 – 66.0 mg/L. Concentrations of dissolved oxygen 

(DO), another important parameter, are also considered. High DO presence leads to an 

oxidizing condition in the water. Lack of or low DO concentration in the water causes a 

reducing condition, favorable for Hg-S complexation. Therefore, water with high SO4 

and low DO concentration are of concern. Concentrations of SO4 and DO in ENP water 

for each sub-area were plotted using the GIS program in Figure 75. 
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Table 52 Water quality data at ENP monitoring stations shown in Figure 74 

(DBHYDRO) 

Stations 
Parameters (mg/L for ions) 

Temp, C pH Cl SO4 Alkalinity Ca Na Mg DO 

P33 27 7.4 102 14.6 264 86.3 66.6 18.2 3.2 

P34 28 7.3 64.9 6 226 125 108.4 20.81 2.5 

P35 27 7.2 385.8 31.6 271.5 88 199.5 27.69 0.8 

P36 27 7.4 146.1 15.1 236.6 85.2 90.65 20.62 2.4 

NE1 27 7.3 138.1 19.6 261 95.6 85.9 19.52 5.0 

S176 28 7.4 131.6 6.7 264.3 95.4 94.9 24.03 4.0 

L31NNGW1 27 7.4 62 7.8 150 56 61 15 4.0 

NP206 27 7.5 72 9.9 225.1 80.2 55 4.87 2.1 

S332 27 7.5 58.9 7.2 224.4 81.3 73.5 10.2 0.9 

S178 27 7.4 93 44.6 240.8 93.7 14.3 17.1 1.3 

S18C 27 7.4 93 44.6 240.8 93.7 14.3 17.1 2.1 

EPGW 27 7.4 920 65.7 208 117 491.5 45.3 5.2 

P37 27 7.1 871.7 12.3 257 105 18.3 5.99 5.0 

X5 27 7.1 946 23 196 79.1 11.5 3.21 0.7 

S12C 27 7.5 50 17 196 88 56.7 8 3.7 

S12A 27 7.5 12 10 208 78.9 20 5 4 

ENP-TC1 27 7.4 58.9 12.5 224.4 81.3 73.5 10.2 6 

ENP-TS1 27 7.4 100 27 180 78 27 14 4.5 

ENP-TS5 27 7.1 850 36 180 160 120 55 6 

ENP-TS4 27 7.1 600 30 180 140 130 46 4.5 

North-River 27 7.1 800 2.3 340 74 1200 54 8 
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Figure 73 Map for the study area of Hg speciation distribution in ENP 
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Figure 74 Sub-areas in the ENP  



 

178 

It can be seen in Figure 75 that, the areas of concern are along the Shark River 

Slough (P33, P35, P36) and canal C-111 (S178 and S178C). Taylor Slough areas (in 

vicinity of stations ENPTS1, ENPTS4, ENPTS5, and P37) had high concentration of SO4 

.However, they had high DO concentrations also; therefore, the possibility of Hg-S 

species formation in those areas were very low (Choi and Harvey, 2000; Harvey et al., 

2000).  

For the Shark River Slough, the results showed potential for Hg-S formation, 

which later can lead to the methylation of Hg (i.e., MeHg). These results are consistent 

with the study of Axelrad et al. (2008), who reported that the Hg concentration in 

sampled fish (Largemouth bass) in Shark River Slough during 2007 exceeded the USEPA 

human health fish tissue criterion (0.3 µg/g). The concentration of Hg in sampled fish in 

this area ranged between 1.0 -1.4 µg/g. This indicates the presence of MeHg which lead 

to the Hg accumulation in the fish skin. 
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Figure 75 Map of SO4 distribution in ENP area 
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6.5 ENP Test-Bed Simulation – Surface Water Transport Mode 

This section presents the Hg transport study in the Shark River Slough (SRS), 

where Hg has accumulated in fish skin as was reported in literature (Adams, and Onorato, 

2005; Axelrad et al., 2008; Duvall and Barron, 2000). In this section, the PHREEQC-

PHAST integrated model of the geochemical PHREEQC and the 3-dimensional flow 

HST3D model was used to simulate the Hg transport. PHAST requires three model input 

files for transport, chemistry, and supporting information databases. All three files can be 

written in PHREEQC format. The PHREEQC database that was developed previously 

was used in all the simulations. With the HST3D integration, PHAST has capability to 

calculate the transport in 3-D flow. The study area and the model domain are shown in 

Figure 76. 

 

Figure 76 Map of Hg transport study area and model domain located in ENP Shark River 

Slough (modified after Harvey et al., 2005) 
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The modeling domain shown in Figure 76 covers an area of 27 km x 10 km of 

Shark River Slough (Harvey et al., 2002; and Harvey et al., 2005). The head boundaries 

assumed for the model were at locations NE5 and NP202 (Harvey et al., 2005; Leonard et 

al., 2006; and Guentzel et al., 2001). The flow direction was assumed to be from NE5 and 

P202 to P35. The water quality data at different locations (NE5, P202, P33, P36, P35) 

were collected from DBHYDRO and used in the model (Table 53). The flow parameters 

used in the model are shown in Table 54 (Harvey et al., 2005 and Leonard et al., 2006). 

Table 53 Water quality data at different stations used for the Hg transport study 

(DBHYDRO) 

Parameters 

Stations 

NE5 P202 P33 P36 P35 

pH 7 7 7 7 7 

Temperature, °C 25 25 25 25 25 

Alkalinity (mg/L) 250 241 264 236 271 

Na (mg/L) 50 45 66 90 199 

Ca (mg/L) 70 68 86 85 88 

Mg (mg/L) 15 14 18 20 27 

SO4 (mg/L) 13 12 14 15 31 

Cl (mg/L) 10 10 102 146 385 

Hg* (mg/L) 2.96x10
-5

 2.96x10
-5

 - - - 

DOC** (mg/L) 30 30 30 30 30 

Peat** (mg/L) 1,000 1,000 1,000 1,000 1,000 

*The average concentration of Hg in Everglades in mg/L (DBHYDRO).  

**DOC and peat concentrations were calculated using the information obtained from Drexel et al. (2002). 

Drexel et al. (2002) reported that the 40 mg/L of Everglades peat release 1.2 mg/L of DOC. If peat is 

considered as an only major source that releases DOC into the water, and since ENP water contains an 

average 30 mg/L concentration of DOC, thus from peat and DOC relationship reported in Drexel et al. 

(2002), peat concentration was estimated to be 1,000 mg/L and this value was used in this study. 
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Table 54 Transport parameters used for Hg transport study in Shark River Slough 

Parameters Values 

Model Domain 27 km x 10 km 

Velocity, m/d 
777 (Harvey et al., 2005; Leonard et 

al., 2006) 

Dispersivity, m 6 (Harvey et al., 2002) 

Diffusivity, m
2
/s 1x10

-9
 (Harvey et al., 2005) 

Number of Grid in X axel 27 

Number of Grid in Y axel 10 

Number of Grid in Z axel 1 

Grid size 1 km x 1 km 

Simulation time, years  200  

Grid for NE5 station (X1, Y1, Z1: X2, Y2, Z2) 
0, 0, 0 : 1, 3.1, 1 it associated with 

water quality from station NE5 

Grid for NP202 station (X1, Y1, Z1: X2, Y2, Z2) 
0, 3.1, 0, : 1, 10, 1 it associated with 

water quality from station NP202 

Grid for P33 station (X1, Y1, Z1: X2, Y2, Z2) 
8.5, 5, 0, : 9, 7.5, 1 it associated with 

water quality from station P33 

Grid for P36 station (X1, Y1, Z1: X2, Y2, Z2) 
17, 5, 0, : 18, 7.5, 1 it associated with 

water quality from station P36 

Grid for P35 station (X1, Y1, Z1: X2, Y2, Z2) 
25, 4.5, 0, : 27, 5.5, 1 it associated with 

water quality from station P35 

 

The enhanced PHREEQC database was used in all the simulations. The 

simulations assumed that the Hg entered the model domain at NE5 and NP202, where 

there were existing peat and DOC. Peat was considered to be part of the sediment column 

and it does not move with the water, while the DOC does flow with the water in 

dissolved form. Hg then binds and moves along with the DOC. This binding is expected 
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because of the strong binding constant between Hg and DOC (log K = 23.2 for a strong 

site and 10 for a weak site). Figure 77 shows that the Hg-DOC concentration is predicted 

to be high at the beginning of the modeling domain, around NE5 and NP202, where the 

Hg was introduced into the model. Hg binds strongly to the DOC and forms Hg-DOC at a 

concentration of about 8.6 ng/L, which is 27% of the initial Hg concentration. The 

transport of Hg-DOC is slow, due to the low velocity, which is approximately 0.9 cm/s or 

777 m/d. The estimated hydraulic retention time of ENP water is approximately 11 days. 

Figure 77 also shows the theoretical transport expectation of Hg-DOC at different 

time intervals (0 – 200 years). At year 5, the Hg-DOC covers 30 km
2
 and it reaches 100 

km
2
 at year 200. Figure 78 shows that the concentration of Hg-DOC decreases as it 

travels from the sources. The Hg-DOC concentration at any particular point, for instance 

at P33, increases with time (for instance, the concentration at P33 at year 200 is higher 

than in year 50 or later on). This is because of the low ENP water velocity. Of course, the 

concentrations increase over time within the modeling domain, as Hg-DOC and other 

species.  
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Figure 77 Hg-DOC species transport in Shark River Slough (0 – 200 years) 
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Figure 78 Hg-DOC concentration at NE5 and P33 stations at different time periods 

 

Figure 79 depicts the effect of Hg retardation by peat sediments. With an average 

Hg-Peat log binding constant of 22 for a strong site and 11.8 for a weak site, an Hg-Peat 

concentration in Shark River Slough of 21.6 ng/L is obtained at the beginning of the 

modeling domain where Hg is introduced. This is about 73% of the initial Hg 

concentration. Although, the binding constants between Hg and peat is lower than those 

for Hg-DOC, the rich amount of peat in ENP water provides more sites for Hg to attach 

to peat. 
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Figure 79 Hg-Peat complexation in Shark River Slough (0 - 200 years) 
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Figure 80 illustrates that the Hg-Peat concentration decreases with increasing 

distance and this may be attributed to the decrease in available free Hg along the travel 

distance. The Hg-Peat complex concentration, at any point (for instance P33) along the 

travel distance, is estimated to increase with time in relation to the ENP water velocity. 

Hg attached on peat may most possibly be retained at the slough bottom and thus 

“immobilized”. 

 

 

Figure 80 Hg-Peat concentration at NE5 and P33 stations at different time periods 

 

The remaining trace amount of formed Hg, 6 x10
-14

 µg/L, moves with water. This 

amount is available to complex with inorganic ions (i.e., inorganic-Hg complexes). The 

transport of inorganic-Hg (0 – 200 years) in Shark River Slough is described in Figure 

81. 

0.0

5.0

10.0

15.0

20.0

25.0

0 2 4 6 8 10

H
g
-P

ea
t 

(n
g

/L
)

Distance (km)

Hg-Peat

50 years

100 years

150 years

200 years

NE5 P33



 

190 

Inorganic-Hg 0 year 

 

5 years 

 
 

20 years 

 

40 years 

 
60 years 

 

80 years 

 



 

191 

100 years 

 

120 years 

 
140 years 

 

160 years 

 

180 years 

 

200 years 

 
 

Figure 81 The transport of inorganic Hg in Shark River Slough (0 - 200 years) 
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Analysis of Figure 81 points out that when Hg is introduced it binds to DOC and 

peat; as a result, the inorganic-Hg complex fraction is expected to be low at the 

beginning. For the velocity of ENP water considered here, inorganic-Hg is expected to 

cover 60 km
2
 after 5 years and about 150 km

2
 after 200 years. However, inorganic-Hg is 

much smaller, trace amounts, than the organic complexes to DOC and peat. 
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VII. CONCLUSIONS 

 

This chapter provides a detail description of the conclusions that were drawn from 

the research work. It also summarizes how the research was able to address the objectives 

and questions that were posed in Chapter 1. The PHREEQC model developed in this 

research, with a significantly enhanced Hg database, is capable of predicting the behavior 

of various Hg-species in a variety of processes. These include dissolution/precipitation, 

ion exchange, and surface complexation. In addition, the enhanced PHREEQC model, 

coupled with the transport model offers a computational tool to be used in site 

applications (specific site data input is required), to understand the fate and transport of 

Hg in the aquatic environments of interest. 

 

7.1 Enhanced Model Confirmation 

The enhanced model was confirmed using documented experimental and field 

data. This strengthened the confidence in the model and its capability to simulate Hg 

processes and transport. 

Using the experimental data documented in relevant literature, the enhanced 

model was tested to predict Hg species for a wide range of water pH conditons (2-10). 

Overall, the comparisons between the model results and those from literature were 

satisfactory. 

The  model was tested using SFWMD field data to study the capability to 

calculate major ions, which are typical constituents in all aqueous environments. The 

model prediction of major ions as function of salinity, were comparable with the 
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observed data collected from over 30 monitoring wells in the SFWMD area. This 

indicates that: 1) the enhanced model is capable of simulating the geochemical processes 

for major ions, which are expected to interact with Hg in aqueous environments; and 2) 

the enhanced model is capable of capturing the effect of salinity on chemical processes.  

An Hg transport simulation was conducted using the enhanced PHREEQC model 

in order to study the solute transport in a groundwater setting at Oak Ridge, TN. The goal 

was to determine the effects of ion-exchange and surface complexation on Hg transport. 

The model results compared well with the empirical data and proved the capability of the 

PHREEQC coupled-transport model. The enhanced model is an effective tool and can be 

used to simulate the hydrogeochemical transport of Hg in a groundwater setting. There is 

a lot of potential for the enhanced PHREEQC model as a tool in the screening, selection 

and monitoring of remediation technologies, for Hg contaminated groundwater sites, such 

as EFPC. 

 

7.2 Fundamental Scenarios and Analysis 

The enhanced model showed that the Hg species concentrations were influenced 

by the pe and pH of water. Under oxidizing conditions, HgCl2, HgClOH and Hg(OH)2 

were the dominant species. HgCl2 was dominant in the pH range of 2.0-7.0 and HgClOH 

in the range of 7.0 – 7.5. Hg(OH)2 was the dominant species for pH > 7.5. Cinnabar was 

the dominant species under reducing water conditions for all pH. 

The enhanced model showed that the exchangers affected the Hg concentration in 

the water through the ion exchange process in the order of Illite < Montmorillonite < 

Vermiculte. The effect of ion exchange increased with the CEC of the exchanger. This 
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result was consistent with the previous studies. The model results, with the improved Hg 

surface complexation database for Fe(OH)3, Gibbsite, and Kaolinite, showed that the 

surface complexation process affected the Hg concentration. These sorbents can complex 

strongly with Hg and hinder its transport. The effect of these minerals on Hg are in the 

order of Kaolinite < Gibbsite < Fe(OH)3. The enhanced model also showed that 

Hg(OH)2, Hg(OH)
+
 and HgOHCl can complex with the minerals better than HgCl2, 

HgCl3
-
 and HgSO4 species for pH in the range 4.5-8.5. 

The effect of ion exchange on Hg transport was observed to be low in the 

groundwater and surface water settings that were studied. This may be related to either 

the low exchange equilibrium constant or the low concentrations of exchangers or both 

that are expected in typical ground and surface water settings.  

The effect of surface complexation on Hg transport was also estimated in both 

typical groundwater and surface water settings for Gibbsite, Kaolinite and Fe(OH)3. 

Kaolinite was observed to have no effect on Hg transport in the studied surface water 

setting. This may be attributed to its low equilibrium constant or low expected 

concentrations or both.  

 

7.3 EFPC Test-Bed 

At the typical conditions of the water at East Fork Poplar Creek (EFPC) (water 

pH 7.0 - 9.2 and temperature of 25 °C), the most dominant species, as predicted by the 

model, were Hg(OH)2 and HgClOH. The formation of Hg(OH)2 increased with water pH 

and temperature. For water pH between 2.0-7.0, an increase in water pH and temperature 

favored the production of HgClOH. 
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Simulation results predicted the water to be supersaturated with Ferrihydrite, 

Goethite, Magnesioferrite, Hematite, FCO3Aptite, Lepidocrocite, Hydroxylapatite, and 

Arogonite. The formation of these minerals increased with the water pH. In addition, an 

increase in water temperature favored the precipitation of Ferrihydrite, Goethite, 

Magnesioferrite, and Hematite. However, temperature did not favor the formation of 

FCO3Aptite, Lepidocrocite, Hydroxylapatite, and Arogonite.  

The Hg transport in ORR groundwater (Bear Creek Valley) was investigated 

using the enhanced model. The result showed that the Hg transport was influenced by 

ion-exchange and surface complexation with Fe(OH)3 and Gibbsite. The water quality at 

GW-923 showed that water was supersaturated with cinnabar. Thus, it was hypothesized 

that, at the test well, the dissolution of cinnabar became a source of Hg. The dominant Hg 

species at GW-923 was HgCl2. This indicated that, at this well location, the Cl-ligand 

promoted the mobilization of Hg. The presence of Fe(OH)3 and Gibbsite at wells GW-

363 and 369 reduced the Hg concentration in the solution and retarded the transport of 

Hg by surface complexation.  

The enhanced model was employed to investigate the feasibility of using 

reduction in Hg loading as an Hg control strategy at EFPC. The model was used in the 

transport mode to assess the role of ion exchange and surface complexation in EFPC. 

Among other estimates, the application showed that the Hg concentration in EFPC can be 

reduced from 0.5 µg/L to about 0.08 µg/L within 60 years, if the Hg loading at the 

sources is reduced to 2.5 g/day. Furthermore, if the loading is further reduced to 0.15 

g/day, Hg concentrations in the creek will reach  0.05 µg/L within 45 years. 
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7.4 ENP Test-Bed 

Surface waters at ENP possess flow characteristics and water quality that are quite 

different from the previous test bed. Here, the DOC can reach average concentrations of 

31 mg/L. For the surface binding with Hg(II), DOC could be defined as having two type 

of binding sites: weak and strong. The DOC’s strong binding site is made of reduced 

sulfur ligand (RS
-
). The strong site has a higher Hg-DOC equilibrium constant (log K of 

28) when compared to the weak binding site (log K of 10). Using the enhanced model to 

study Hg species in ENP water, it was estimated that the Hg-DOC complex dominates at 

all pH and temperature conditions. The concentration of Hg-DOC species was ten orders 

of magnitude higher than other Hg-inorganic species in the ENP test-bed. It was also 

estimated that Hg immobilization at the site was influenced by peat. In SRS, Hg-Peat 

equilibrium constant has been reported to be as high as the Hg-DOC (Drexel et al., 2002), 

at concentrations of 1000 mg/L compared to 31 mg/L of DOC.  

The enhanced model showed that, for typical ENP water pH range of 7.0-8.2, the 

water is saturated with Calcite, Aragonite, Dolomite and Ca(PO4)3OH. The results were 

consistent with several studies which reported that those minerals are typically found in 

ENP water. The mineral precipitation increased with pH in the range of 2-10. An increase 

in water temperature also favored the precipitation of Calcite, Aragonite, and Dolomite, 

but it did not affect the precipitation of Ca(PO4)3OH. 

Results on the sensitivity of Hg-speciation to Cl
-
 confirmed that Hg-speciation 

was strongly influenced by Cl
-
 concentration and Hg-Cl binding constants (i.e., log K). 

At low salinity (i.e., low Cl
-
 concentrations), Hg-Cl species formation was dominated by 

HgCl2. For higher salinities, HgCl2 decreased and HgCl3
-
 and HgCl4

2-
 increased. 
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High sulfate and low DO contents in water promotes reduced sulfur that triggers 

the methylation of Hg (i.e., MeHg). The enhanced model showed that in such water 

conditions, HgHS2
-
 was a dominant species. At ENP, the waters of concern were those of 

the Shark River Slough (SRS) (around stations P33, P35, P36) and canal C-111 (by 

stations S178 and S178C), where high sulfate and low DO contents in water were found. 

Importantly, Harris (2011) and Harris et al. (2007) reported that high MeHg levels were 

found in fish and water in the slough.  

The model was then applied to assess Hg transport in SRS, using the enhanced 

database at specific site conditions. The transport study was able to identify the roles of 

Hg-DOC and Hg-Peat complexes. The Hg-DOC complex was transported with the water, 

while Hg- peat was not and it settled down in the bottom. The results suggest that 27% of 

Hg(II) is expected to bind to DOC to be then transported in the SRS waters. The 

remaining 73% binds to peat and is most probably removed from the solution phase via 

settling. Trace amounts of Hg(II) were estimated to bind to inorganic ligands. In sum, the 

major dissolved-Hg species that moved in the slough water is predicted to be Hg-DOC 

complex. Importantly, the transport of Hg-DOC in SRS is slow which can be attributed to 

the low velocity of the slough flow. 
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VIII. RECOMMENDATION FOR FURTHER STUDY 

 

The Hg species and their transport were studied based on average conditions in 

the test-beds. The assumptions used in this study are the following: 

1. The models PHREEQC and PHAST are appropriate to simulate saturated flow 

conditions. 

2. The models do not account for density-dependent flow caused by concentration 

gradients or temperature variations (e.g., brackish or saline environments). 

3. The improvement on the ionic strength term in Debye-Hückel’s expressions has 

been made and fitted for the major ions using chloride mean-salt activity 

coefficient data. This makes the models reliable at higher ionic strengths in a 

sodium chloride dominated system. 

4. Only physical and chemical processes that affect the fate and transport of Hg 

species were recognized and analyzed. The role and effect of biological 

transformations as well as the photo-degradation were not included. 

5. Reactions were considered at equilibrium and the kinetics of reactions were not 

addressed in most of the simulations. However, an exception was made in the 

case of testing the effect of kinetics on the sorption of MeHg in a Floridian 

aquifer setting. 

6. The model solves the transport ARD equation using an explicit finite difference 

scheme that is forward in time and space. For each time step, the advective 

transport is first calculated, then all the equilibrium controlled chemical reactions, 
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thereafter the dispersive transport, which is followed again by equilibrium 

controlled chemical reactions (Parkhurst and Appelo, 1999).  

7. One major assumption in this study was that there is no interaction among 

chemical species, including Cu
2+

, Ni
2+

, Br
-
, and, I

-
 when they are simultaneously 

present in the same aquatic environment. In fact, interaction (or competition) may 

play a very important role in the ultimate fate of Hg species. 

8. All the simulations shown in this study were conducted under the simple 

assumptions made from the available site data (water composition, flow 

conditions and site characteristics) to study the fate and transport of Hg at the two 

test-beds. The assumptions of water condition and other site parameters were 

explained for each simulation made (Chapters 4-6). The assumptions may not 

fully represent the real site conditions which are more complex environments. 

However, the main purpose of this study was to demonstrate a method to enhance 

the coupling of geochemical and hydrological modellings of contaminants, which 

in this case is Hg. The assumptions made were suitable to use for this purpose and 

the purpose of this study was achieved. However, as a recommended future work, 

more complex site characteristics such as, more complex water compositions and 

sediments may be included in the simulations .  

 

The following works are recommended for the future to improve the capability of 

the model in analyzing the Hg fate and transport in aquatic environments. 

1. The model database may be further enhanced by including a number of minor 

species (e.g. Cu
2+

, Ni
2+

, Br
-
, I

-
, etc.), in addition to the major species (e.g., Ca

2+
, 
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Mg
2+

, Cl
-
, and SO4

2-
, etc. ), which may be needed to best simulate site conditions 

on a case by case basis. 

2. Another important area for future development is the model capability to 

simultaneously simulate multiple species (i.e., inorganic and organic), which may 

be subjected to the same chemical processes (dissolution/precipitation, ion 

exchange, and surface complexation, among others). This will enable the model to 

assess competitive effects of interest under more complex scenarios.          
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APPENDIX A 

PHREEQC Capabilities and Limitation 

[Quoted from Parkhurst, D. L. and C. A. J. Appelo, User’s Guide to PHREEQC 

(Version 2), U.S. Geological Survey, U.S. DOI, Denver, CO (1999)] 

 

PHREEQC version 2 is a computer program for simulating chemical reactions 

and transport processes in natural or polluted waters. The program is based on 

equilibrium chemistry of aqueous solutions interacting with minerals, gases, solid 

solutions, exchangers, and sorption surfaces, but also includes the capability to model 

kinetic reactions with rate equations that are completely user-specified in the form of 

basic statements. Kinetic and equilibrium reactants can be interconnected, for example by 

linking the number of surface sites to the amount of a kinetic reactant that is consumed 

(or produced) during the course of a model period. A 1D transport algorithm comprises 

dispersion, diffusion, and various options for dual porosity media. A powerful inverse 

modeling capability allows identification of reactions that account for observed water 

compositions along a flowline or in the time course of an experiment. A chemical data 

base allows application of the reaction, transport, and inverse-modeling capabilities to 

chemical reactions that are recognized as influencing rain, soil, ground and surface water 

quality. 

PHREEQC is based on the FORTRAN program PHREEQE (Parkhurst and 

others, 1980). PHREEQE was capable of simulating a variety of geochemical reactions 

for a system including mixing of waters, addition of net irreversible reactions to solution, 
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dissolving and precipitating phases to achieve equilibrium with the aqueous phase, and 

effects of changing temperature. 

PHREEQE calculated concentrations of elements, molalities and activities of 

aqueous species, pH, pe, saturation indices, and mole transfers of phases to achieve 

equilibrium as a function of specified reversible and irreversible geochemical reactions. 

PHREEQC version 1 (Parkhurst, 1995) was a completely new program written in the C 

programming language that implemented all of the capabilities of PHREEQE and added 

many capabilities that were not available in PHREEQE, including ion-exchange 

equilibria, surface-complexation equilibria, fixed-pressure gas-phase equilibria, and 

advective transport. Other improvements relative to PHREEQE included complete 

accounting for elements in solids and the aqueous and gas phase, mole balance on 

hydrogen and oxygen to account for the mass of water in the aqueous phase, 

identification of the stable phase assemblage from a list of candidate phases, use of redox 

couples for definition of redox state in speciation calculations, and a more robust non-

linear equation solver. 

PHREEQC version 2 is a modification of PHREEQC version 1. All of the 

capabilities and most of the code for version 1 are retained in version 2 and several new 

capabilities have been added, including kinetically controlled reactions, solid-solution 

equilibria, fixed-volume gas-phase equilibria, variation of the number of exchange or 

surface sites in proportion to a mineral or kinetic reactant, diffusion or dispersion in 1D 

transport, 1D transport coupled with diffusion into stagnant zones, and isotope mole 

balance in inverse modeling. The numerical method has been modified to use several sets 

of convergence parameters in an attempt to avoid convergence problems. User-defined 
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quantities can be written to the primary output file and (or) to a file suitable for 

importation into a spreadsheet, and solution compositions can be defined in a format that 

is more compatible with spreadsheet programs. 

Beyond PHREEQC capabilities, it must be acknowledged that the model also has 

limitations that define the extent of its application and result in uncertainties. Limitations 

include for example the expressions used to account for non-ideality of aqueous 

solutions, consistency of databases, models defining ion exchange, surface complexation, 

solid solution activities, numerical dispersion, and convergence in transport modeling, 

among others. 
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APPENDIX B 

PHAST Capabilities and Limitation 

[Quoted from Parkhurst, D.L., Kipp, K.L., and Charlton, S.R., 2010, PHAST 

Version 2—A program for simulating groundwater flow, solute transport, and 

multicomponent geochemical reactions: U.S. Geological Survey Techniques and 

Methods 6–A35, 235 p.] 

The computer program PHAST (PHREEQC And HST3D) simulates 

multicomponent, reactive solute transport in three-dimensional saturated groundwater 

flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with 

capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The 

flow and transport calculations are based on a modified version of HST3D that is 

restricted to constant fluid density and constant temperature. The geochemical reactions 

are simulated with the geochemical model PHREEQC, which is embedded in PHAST. 

Major enhancements in PHAST Version 2 allow spatial data to be defined in a 

combination of map and grid coordinate systems, independent of a specific model grid 

(without node-by-node input). At run time, aquifer properties are interpolated from the 

spatial data to the model grid; regridding requires only redefinition of the grid without 

modification of the spatial data. PHAST is applicable to the study of natural and 

contaminated groundwater systems at a variety of scales ranging from laboratory 

experiments to local and regional field scales. PHAST can be used in studies of migration 

of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as 

aquifer storage and recovery or engineered remediation; and in investigations of the 

natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-
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zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions 

are available in PHAST to simulate flow and transport, including specified-head, flux 

(specified-flux), and leaky (head-dependent) conditions, as well as the special cases of 

rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous 

equilibria using an ion-association or Pitzer specific interaction thermodynamic model; 

(2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange 

sites, surface complexation sites, solid solutions, and gases; and (3) kinetic reactions with 

rates that are a function of solution composition. The aqueous model (elements, chemical 

reactions, and equilibrium constants), minerals, exchangers, surfaces, gases, kinetic 

reactants, and rate expressions may be defined or modified by the modeler. The PHAST 

simulator may require large amounts of memory and long Central Processing Unit (CPU) 

times. To reduce the long CPU times, a parallel version of PHAST has been developed 

that runs on a multiprocessor computer or on a collection of computers that are 

networked. The parallel version requires Message Passing Interface, which is freely 

available. The parallel version is effective in reducing simulation times. PHAST requires 

three input files. Only the flow and transport file is described in detail in this report. The 

other two files, the chemistry data file and the database file, are identical to PHREEQC 

files, and a detailed description of these files is in the PHREEQC documentation. PHAST 

Version 2 has a number of enhancements to allow simpler definition of spatial 

information and to avoid grid-dependent (node-by-node) input definitions. Formerly, all 

spatial data were defined with rectangular zones. Now wedge-shaped and irregularly 

shaped volumes may be used to specify the hydrologic and chemical properties of regions 

within the model domain. Spatial data can be imported from ArcInfo shape and ASCII 
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raster files and from a simple X, Y, Z file format. To accommodate a grid that is not 

aligned with the coordinate system of the imported files, it is possible to define features 

in map and grid coordinate systems within the same input file. 

New capabilities have been added to interpolate spatial data to the two- or three-

dimensional locations of cells and elements. Two-dimensional interpolation is used to 

define surfaces for the tops and bottoms of three-dimensional regions within the model 

domain. Surfaces are created by two-dimensional interpolation of scattered X, Y points 

with associated elevation data. Within the bounds of the scattered points (the convex 

hull), natural neighbor interpolation is implemented, which uses an area weighting 

scheme to assign an elevation to a target point based on elevations at the nearest of the 

scattered points; outside the convex hull, the elevation of the closest point is assigned to a 

target point. A new capability has been added to aggregate flows of water and solute into 

an arbitrarily shaped region and through the boundary-condition cells included in the 

region. Any number of flow aggregation regions may be defined. These regions need not 

be mutually exclusive, and regions can be combined to define larger, possibly 

noncontiguous regions. A facility exists to save heads as a function of time and space for 

these regions, which then can be used to specify boundary-condition heads in a 

subsequent run. 
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APPENDIX C 

Hg-speciation thermodynamic data for PHREEQC model database is shown in 

Tables C 1, C 2 and C 3. The exchange coefficients related to Hg(II) and the sorption 

coefficient of Hg on the surface of minerals are shown in Table C 4 and C 5 respectively. 

Table C 1 Hg species thermodynamic reaction constant added to PHREEQC model 

Hg species Reactions Log K Ref. 

HgHPO4 Hg(OH)2 + HPO4
2- + 2H+ = HgHPO4 + 2H2O 14.99 Powell et al. (2005) 

HgPO4
- Hg(OH)2 + HPO4

2- + H+ = HgPO4
- + 2H2O 9.44 Powell et al. (2005)  

HgCO3 Hg(OH)2 + CO3
2- + 2H+ = HgCO3 + 2H2O 17.70 Powell et al. (2005) 

Hg(OH)CO-
3 Hg(OH)2 + OH- + CO3

2- + 2H+ = Hg(OH)CO-
3 + 2H2O 25.53 Powell et al. (2005) 

HgHCO3
+ Hg(OH)2 + 3H+ + CO3

2- = HgHCO+
3 + 2H2O 22.03 Powell et al. (2005) 

HgS2H
- Hg(OH)2 + 2HS- + OH- + 2H+ = HgS2H

- + 3H2O 54.79 

Hurley et al. (1994) 

and Benoit et al. 

(1999) 

[Hg(CH3COO)]+ Hg(OH)2 + CH3COO- + 2H+ = [Hg(CH3COO)]+ + 2H2O 10.49 Gårdfeldt et al. (2003) 

Hg(CH3COO)2 Hg(OH)2 + 2CH3COO- + 2H+ = Hg(CH3COO)2 + 2H2O 13.19 Gårdfeldt et al. (2003) 

[Hg(CH3COO)3]
- Hg(OH)2 + 3CH3COO- + 2H+ = [Hg(CH3COO)3]

- + 2H2O 19.49 Gårdfeldt et al. (2003) 

[Hg(CH3COO)3]
2 Hg(OH)2 + 4CH3COO- + 2H+  = [Hg(CH3COO)4]

2- + 2H2O 23.29 Gårdfeldt et al. (2003) 

HgRS+ Hg(OH)2 + RS- + 2H+ = HgRS+ + 2H2O 34.69 
Haitzer et al. (2002 

and 2003) 

HgCl+ Hg(OH)2 + Cl- + 2H+  = HgCl+ + 2H2O 12.85 Powell et al. (2005) 

HgCl2 Hg(OH)2 + 2Cl- + 2H+ = HgCl2 + 2H2O 19.22 Powell et al. (2005) 

HgCl3
- Hg(OH)2 + 3Cl- + 2H+  = HgCl3

- + 2H2O 20.12 Powell et al. (2005) 

HgCl4
-2 Hg(OH)2 + 4Cl- + 2H+  = HgCl4

-2 + 2H2O 20.53 Powell et al. (2005) 

HgClOH Hg(OH)2 + Cl- + H+ = HgClOH + H2O 9.31 Powell et al. (2005) 

HgF+ Hg(OH)2 + F- + 2H+ = HgF+ + 2H2O 8.08 Martell et al. (2001) 

HgI+ Hg(OH)2 + I- + 2H+ = HgI+ + 2H2O 18.89 Martell et al. (2001) 

HgI2 Hg(OH)2 + 2I- + 2H+ = HgI2 + 2H2O 30.10 Martell et al. (2001) 

HgI3
- Hg(OH)2 + 3I- + 2H+ = HgI3

- + 2H2O 33.79 Martell et al. (2001) 
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Table C 1 (Cont.) 
 

Hg species Reactions Log K Ref. 

HgI4
-2 Hg(OH)2 + 4I- + 2H+ = HgI4

-2 + 2H2O 35.78 Martell et al. (2001) 

HgOH+ Hg(OH)2 + H+  = HgOH+ +  H2O 2.70 

Hurley et al. (1994) 

and Benoit et al. 

(1999) 

Hg(OH)3
- Hg(OH)2 + H2O  = Hg(OH)3

- + H+ 15.00 

Hurley et al. (1994) 

and Benoit et al. 

(1999) 

HgS2
-2 Hg(OH)2 + 2HS- = HgS2

-2 + 2H2O 31.24 

Hurley et al. (1994) 

and Benoit et al. 

(1999) 

Hg(HS)2 Hg(OH)2 + 2HS- + 2H+  = Hg(HS)2 + 2H2O 43.82 

Hurley et al. (1994) 

and Benoit et al. 

(1999) 

HgSO4 Hg(OH)2 + SO4
-2 + 2H+ = HgSO4 + 2H2O 7.49 Hurley et al. (1994) 

 

Table C 2 Hg thermodynamic data at 25 °C; aq is aqueous, c is condensed, g is gas, liq is 

liquid, ΔHf° is standard heat of formation, ΔGf is standard gibbs free energy, S is entropy 

(Hepler and Olofsson 1974) 
 

Substance ΔHf°, kJ mol
-1

 ΔGf°, kJ mol
-1

 S°, J K
-1

 mol
-1

 

Hg (liq) 0 0 76.02 

Hg(g) 61.317 31.853 174.85 

Hg(aq) 13.93 37.2 -2.1 

Hg
+
(g) 1074.53   

Hg
2+

(g) 2890.4   

Hg
2+

(aq) 170.16 164.703 -36.23 

Hg
3+

(g) 6192   

Hg2(g) 109 68.2 287.9 

Hg2
2+

(aq) 166.82 153.607 65.77 

HgO (c, red, orthorh) -90.83 -58.555 70.29 

HgO (c, yellow, orthorh) -90.83 -58.450 69.87 

HgO (c, red, hexag) -90.33 -58.325 71.25 
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Table C 2 (Cont.) 
 

Substance ΔHf°, kJ mol
-1

 ΔGf°, kJ mol
-1

 S°, J K
-1

 mol
-1

 

HgO(g)   241.8 

HgH(g) 238 213 219.7 

Hg(OH)
+
(aq) -84.5 -52.01 69.0 

Hg(OH)2(aq) -359.8 -274.5 126.4 

Hg(OH)3
-
(aq)  -427.2  

HHgO2
-
(aq)  -190.0  

HgF(g) 2.9 -18.4 248.28 

HgF
+
(aq) -159.0 -123.0 -8 

Hg2F2(c) -485 -431 167 

HgCl(g) 83.7 62.8 259.9 

HgCl
+
(aq) -19.7 -5.0 71 

HgCl2(c) -225.9 -180.3 146.0 

HgCl2(g) -143.1 -141.8 294.68 

HgCl2(aq) -217.1 -172.8 151 

HgCl3
-
(aq) -389.5 -308.8 205 

HgCl4
2-

(aq) -554.8 -446.4 289 

HgCl(OH) (aq) -288.7 -222.2 134 

Hg2Cl2 (c) -265.579 -210.773 191.42 

HgBr(g) 105 67 271.5 

HgBr
+
(aq) 5.4 9.2 75 

HgBr2(c) -170.7 -153.1 172 

HgBr2(g) -86.6 -113.8 320.12 

HgBr2(aq) -161.5 -142.7 167 

HgBr3
-
 (aq) -294.1 -259.0 255 
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Table C 2 (Cont.) 
 

Substance ΔHf°, kJ mol
-1

 ΔGf°, kJ mol
-1

 S°, J K
-1

 mol
-1

 

HgBr4
2- 

(aq) -431.8 -370.7 305 

HgBr(OH) (aq)  -207.9  

HgBrCl(g)   299.4 

HgBrCl(aq)  -161.5  

Hg2Br2(c) -206.94 -181.084 217.6 

HgI(g) 132.2 91.6 281.42 

HgI
+
(aq) 42.3 40.2 75 

HgI2(c, red) -105.4 -101.7 180 

HgI2(c, yellow) -102.9   

HgI2(g) -17.2 -59.8 336.02 

HgI2(aq) -80.3 -74.9 172 

HgI3-(aq) -153.6 -148.1 297 

HgI4
2-

(aq) -236.0 -211.3 356 

HgI(OH) (aq)  -173.2  

HgICl (aq)  -128.4  

HgIBr(g)   320.45 

HgIBr(aq)  -111.3  

HgIBr3
2-

(aq)  -336.69  

HgI2Br2
2-

(aq)  -297.40  

HgI2Br
2-

(aq)  -255.6  

Hg2I2(c) -121.34 -111.002 233.5 

HgS(c, red) -54.0 -46.4 82.4 

HgS(c, black) -50.2 -44.4 88.7 

HgSO4(c) -707.5 -594 142 
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Table C 2 (Cont.) 
 

Substance ΔHf°, kJ mol
-1

 ΔGf°, kJ mol
-1

 S°, J K
-1

 mol
-1

 

Hg2SeO3(c)  -297.5  

HgTe(c) -33.9 -28.0 106.7 

Hg(N3)
+
(aq)  468.6  

Hg(N3)2(aq)  774.0  

Hg(N3)2(c) 592.0 746.4 208.8 

Hg(NO3)
+
(aq)  51.5  

Hg(NO3)2(aq)  -50.2  

Hg(NO2)4
2-

 (aq)  -46.9  

Hg(NH3)2
+
(aq)  87.9  

Hg(NH3)2
2+

(aq) -94.6 11.7 172 

Hg(NH3)3
2+

(aq) -188.3 -20.5 259 

Hg(NH3)4
2+

(aq) -283.7 -51.5 335 

HgNH2Br (c, orthorh)   133.18 

HgNH2Br (c, cubic)   130.08 

Hg2(P2O7)
2-

 (aq)  -1820  

Hg2(OH)(P2O7)
3-

 (aq)  -2012  

Hg2(P2O7)2
6-

 (aq)  -3694  

Hg2(OH)2(P2O7)
4-

 (aq)  -2197  

Hg(C2O4) (c) -678.2   

Hg2(CO3) (c) -553.5 -468.2 180 

Hg2(C2O4) (c)  -593.3  

Hg2(C2O4)2
2-

 (aq)  -1234.3  

Hg2(OH)(C2O4)
-
 (aq)  -752.3  
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Table C 3 Hg-Organic thermodynamicdata; aq is aqueous, c is condensed, g is gas, liq is 

liquid, ΔHf° is standard heat of formation, ΔGf is standard gibbs free energy, S is entropy 

(Hepler and Olofsson 1974) 
 

Substance ΔHf°, kJ mol
-1

 ΔGf°, kJ mol
-1

 S°, J K
-1

 mol
-1

 

Hg(CH3) (g) 167   

Hg(CH3)2 (liq) 59.8 140.2 209 

Hg(CH3)2 (g) 94.39 146.0 305 

Hg(CH3)(C2H5) (liq) 46.4   

Hg(C2H5)2 (liq) 30.1   

Hg(C2H5)2 (g) 75.3   

Hg biphenyl (c) 282.8   

Hg2Ac2 (c) (Ac- = 

acetate) 
-841 -640.11 310 

Hg(CH3)Cl (c) -116.3   

Hg(CH3)Cl (g) -52.3   

Hg(C2H5)Cl (c) -139.3   

Hg(C2H5)Cl (g) -62.8   

HgCl2 CH3 OH (c) -474.9 -347.7 243 

HgCl2 2CH3 OH (c) -720 -514.6 335 

Hg(CH3)Br (c) -85.8   

Hg(CH3)Br (g) -18.4   

Hg(C2H5)Br (c) -106.7   

Hg(C2H5)Br (g) -30.1   

Hg(CH3)I (c) -42.7   

Hg(CH3)I (g) 21.8   

Hg(C2H5)I (c) -65.7   
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Table C 3 (Cont.) 
 

Substance ΔHf°, kJ mol
-1

 ΔGf°, kJ mol
-1

 S°, J K
-1

 mol
-1

 

Hg(CN)
+
(aq) 224.7 238.5 66.1 

Hg(CN)Cl (aq)  67.4  

Hg(CN)Br(aq)  84.1  

Hg(CN)I(aq)  121.3  

Hg(CN2)(c) 276   

Hg(CN)2(c) 263.6   

Hg(CN)2(g) 381   

Hg(CN)2(aq) 277.4 312.5 161.1 

Hg(CN)2Cl
-
 (aq)  182.8  

Hg(CN)3
-
 (aq) 396.2 463.6 219.7 

Hg(CN)3Cl2
-
 (aq)  335  

Hg(CN)3Br2
-
 (aq)  356  

Hg(CN)2(tu)(aq) (tu = 

thiourea) 
206.3   

Hg(CN)2(tu)2(aq) 105.0   

Hg(ONC)2(c) (mercuric 

fulminate) 
268   

Hg(SCN)
+
 (aq)  206.3  

Hg(SCN)Cl (aq)  35.6  

Hg(SCN)Br (aq)  51.5  

Hg(SCN)2 (aq) 195.4   

Hg(SCN)3
-
 (aq)  329.7  

Hg(SCN)4
2-

 (aq) 325.5 411.7 452 

Hg(OH)(SCN) (aq)  461.9  

Hg(SCN)(CN)3
2-

 (aq)  553.5  
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Table C 3 (Cont.) 
 

Substance ΔHf°, kJ mol
-1

 ΔGf°, kJ mol
-1

 S°, J K
-1

 mol
-1

 

Hg2(SCN)2(c)  226.4  

Hg(ma)2
+
(aq) (ma = 

methylamine) 
 136.0  

Hg(ma)2
+
(aq) -55.6 104.2 265.3 

HgCl(ma)2
+
(aq) -148.5 -34.7 168.6 

Hg(gl)
+
 (aq) (gl- = glycinate)  -208.8  

Hg(gl)2 (aq) -860.2 -574.9 264 

HgCl(gl) (aq) -545.2 -376.1 192 

HgCl(en)
+
(aq) -141.8   

Hg2CrO4(c)  -623.8  

 

Table C 4 Ion exchange coefficients for various ions related to Hg(II) (Khan and Alam, 

2004) 

Ions 
Ion exchange coefficients 

KHg/M 

Na
+
 0.04 

K
+
 0.03 

Mg
2+

 0.02 

Co
2+

 0.04 

Ni
2+

 0.02 

Cu
2+

 0.03 

Mn
2+

 0.03 

Zn
2+

 0.02 

Pb
2+

 0.07 

Al
3+

 0.01 

Fe
3+

 0.05 
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Table C 5 The surface complexation and the intrinsic equilibrium constants (log Kint) of 

Hg(II) adsorption on ferrihydrite(≡Hfo), quartz (≡Sio), and gibbsite (≡Aloh) (Dzombak 

and Morel, 1990; Sarkar et al., 1999) 

Sorption Reactions Log Kint 

≡Hfo_sOH + Hg(OH)2 + H
+
 = ≡Hfo_sOHg

+
 + 2H2O 13.95 

≡Hfo_wOH + Hg(OH)2 + H
+
 = ≡Hfo_wOHg

+
 + 2H2O 12.64 

≡Sio_OH + Na+ = ≡Sio_Na
+
 + H

+
 -6.21 

≡Sio_OH + Hg
2+

 + H2O = ≡Sio_OHgOH + 2H
+
 -2.19 

≡Sio_OH + Hg
2+

 + 2H2O = ≡Sio_OHg(OH)2
-
 + 3H+ -7.75 

≡Sio_OH + Hg
2+

 + Cl
-
 + H2O = ≡Sio_OHgOHCl

-
 + 2H

+
 2.14 

≡Sio_OH + Hg
2+

 + PO4
3-

 + H2O = ≡Sio_OPO3Hg(OH)2
2-

 + H
+
 11.61 

≡Aloh_OH + H
+
 = ≡Aloh_OH2

+
 2.77 

≡Aloh_OH = ≡ Aloh _O
-
 + H

+
 -6.77 

≡ Aloh _OH + Na
+
 = ≡ Aloh _Na

+
 + H

+
 -6.21 

≡ Aloh _OH + Hg
2+

 + H2O = ≡ Aloh _OHgOH + 2H
+
 -2.19 

≡ Aloh _OH + Hg
2+

 + 2H2O = ≡ Aloh _OHg(OH)2
-
 + 3H

+
 -7.75 

≡ Aloh _OH + Hg2+ + Cl
-
 + H2O = ≡ Aloh _OHgOHCl

-
 + 2H

+
 2.14 

≡ Aloh _OH + Hg
2+

 + PO4
3-

 + H2O = ≡ Aloh _OPO3Hg(OH)2
2-

 

+ H
+
 

11.61 
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APPENDIX D 

The location of selected Coastal Florida aquifer monitoring stations are shown in 

Figure D 1. The data collected from over 30 stations throughout the South Florida 

District during years 2005 and 2006 are shown in Table D 1 and D 2 respectively. 

 

Figure D 1 the locations of over 30 water monitoring stations in 16-county region 

covered by the South Florida District (modified after DBHYDRO) 
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Table D 1 Florida aquifer quality data collected during year 2005. Salinity in ppt (‰), major ion concentrations in mg/L 

(DBHYDRO) 

Project 

Code 
Station ID 

Collected 

date 
T (C˚) pH Salinity Na

+
 Mg

2+
 K

+
 Ca

2+
 Cl

-
 SO4

2-
 Alka DO 

RFGW BICY-MZ1 1-Feb-05 27.47 8.72 3.38 1040 135 44.5 68.8 1700 450 85.7 0.24 

RFGW BICY-MZ1 11-Apr-05 27.82 9.02 3.34 1050 123 42.1 42.6 1900 420 99 0.1 

RFGW BICY-MZ1 12-Jul-05 27.77 9.21 3.38 1040 116 41.9 39 1800 410 37 0.12 

RFGW BICY-MZ1 19-Sep-05 27.85 8.48 2.06 1040 128 42.7 43.4 1700 450 55 2.06 

RFGW BICY-MZ1 29-Dec-05 27.85 8.83 3.32 1030 130 42 50.7 1800 450 73 0.16 

RFGW BICY-MZ2 1-Feb-05 27.74 7.65 5.21 1500 188 60.4 152 2900 600 148 0.32 

RFGW BICY-MZ2 11-Apr-05 28.12 7.69 5.27 1550 180 57.8 145 2900 610 150 0.11 

RFGW BICY-MZ2 11-Jul-05 28.34 7.47 5.37 1680 192 62.3 153 
 

570 150 0.04 

RFGW BICY-MZ2 19-Sep-05 28.29 7.45 1.07 1570 184 59.6 147 3000 590 150 1.07 

RFGW BICY-MZ2 29-Dec-05 28.19 7.66 5.22 1560 192 58.3 160 2600 1200 160 0.17 

RFGW BICY-MZ3 31-Jan-05 27.8 8.5 27.29 8010 817 238 488 15000 1400 29.9 0.47 

RFGW BICY-MZ3 12-Apr-05 27.71 7.57 27.44 8160 860 246 567 17000 1200 130 0.12 

RFGW BICY-MZ3 12-Jul-05 28.35 7.39 27.99 8320 839 244 565 15000 1500 120 0.2 

RFGW BICY-MZ3 4-Oct-05 27.78 7.45 26.52 8730 907 272 600 15000 1300 140 0.37 

RFGW BICY-MZ3 29-Dec-05 28.45 7.48 27.23 8400 897 245 605 16000 2700 130 0.13 

RFGW BICY-MZ4 1-Feb-05 27.84 6.71 34.33 11600 1080 375 779 21000 2800 190 0.63 

RFGW BICY-MZ4 12-Apr-05 27.61 7.05 34.8 10600 1090 377 773 20000 4500 150 0 

RFGW BICY-MZ4 12-Jul-05 28.46 6.92 35.08 11300 1100 382 804 19000 2600 150 1.85 

RFGW BICY-MZ4 4-Oct-05 29.21 6.85 33.65 11000 1070 380 743 20000 2500 190 1.16 
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Table D 1 (Cont.) 
 

Project 

Code 
Station ID 

Collected 

date 
T (C˚) pH Salinity Na

+
 Mg

2+
 K

+
 Ca

2+
 Cl

-
 SO4

2-
 Alka DO 

RFGW BSU-MZL 14-Apr-05 31.83 7.58 33.3 10300 1120 351 678 20000 4600 110 2.94 

RFGW BSU-MZL 14-Jul-05 32.10 7.49 33.65 10300 1080 362 654 19000 2400 120 3.16 

RFGW BSU-MZL 22-Sep-05 33.09 7.62 31.95 10400 1070 352 650 19000 2800 120 2.08 

RFGW BSU-MZL 28-Dec-05 31.96 7.54 33.92 9670 1060 345 659 19000 250 120 3.62 

RFGW BSU-MZU 3-Feb-05 31.91 7.84 1.49 337 79.1 16 102 690 
 

136 0.4 

RFGW BSU-MZU 14-Apr-05 31.96 7.7 1.49 329 78.2 15.6 99.8 700 250 130 0.73 

RFGW BSU-MZU 14-Jul-05 33.81 7.62 1.51 329 77.2 15.3 97.6 700 300 140 0.18 

RFGW BSU-MZU 22-Sep-05 31.87 7.69 1.46 329 77.1 15.4 97 780 240 150 0.45 

RFGW DF-4 25-Jan-05 22.94 7.94 3.41 962 133 33.3 108 1700 530 120 0.62 

RFGW DF-4 27-Apr-05 22.67 7.95 3.59 1010 142 36.7 128 1900 520 140 0.03 

RFGW DF-4 20-Jun-05 21.83 7.64 3.44 985 133 33.6 107 1800 550 120 0.06 

RFGW DF-4 27-Sep-05 21.81 7.6 3.31 965 133 33.8 104 1760 424 120 0.08 

RFGW DF-5 25-Jan-05 23.03 9.78 2.98 917 21.8 42.7 153 1500 360 130 0.21 

RFGW DF-5 5-Apr-05 24.11 9.7 2.98 892 34.8 42.2 155 1700 410 5 0.91 

RFGW DF-5 20-Jun-05 22.77 9.62 3.02 891 35.7 40.7 146 1600 470 6.4 0.08 

RFGW DF-5 27-Sep-05 22.9 9.49 2.93 920 39.3 42.8 166 1600 410 9 0.1 

RFGW ENP-100 25-Jan-05 28.14 7.26 5.22 1480 170 53.8 150 2800 480 150 0.23 

RFGW ENP-100 5-Apr-05 28.38 7.47 5.16 1520 171 54.7 149 2800 490 160 0.33 

RFGW ENP-100 8-Jul-05 28.07 7.29 5.09 1470 169 53.5 145 2800 490 150 0.87 
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Table D 1 (Cont.) 
 

Project 

Code 
Station ID 

Collected 

date 
T (C˚) pH Salinity Na

+
 Mg

2+
 K

+
 Ca

2+
 Cl

-
 SO4

2-
 Alka DO 

RFGW FPU-MZL 17-Oct-05 24.57 7.65 22.87 7540 822 249 326 13000 1400 170 3.54 

RFGW FPU-MZU 19-Apr-05 23.61 8.14 1.92 494 84.3 19.6 71.4 990 190 160 3.18 

RFGW FPU-MZU 29-Jun-05 24.78 8.65 1.77 477 73.6 18.5 32.6 1000 140 91 0.16 

RFGW I75-MZ1 1-Feb-05 26.9 8.28 2.91 834 124 34.3 115 1600 460 146 0.6 

RFGW I75-MZ1 27-Apr-05 25.94 8.01 5.07 833 134 34 121 1500 480 160 0.02 

RFGW I75-MZ1 22-Jun-05 25.68 8.04 2.98 813 124 31.9 103 1500 2300 140 0.02 

RFGW I75-MZ1 3-Oct-05 27.94 7.83 2.87 885 138 42.2 125 1500 410 140 0.24 

RFGW I75-MZ1 28-Dec-05 27.79 8.01 3.05 876 142 33.8 130 1500 490 140 0.65 

RFGW I75-MZ2 31-Jan-05 28.28 7.4 6.97 1960 250 63.1 219 3800 620 156 0.49 

RFGW I75-MZ2 11-Apr-05 29.28 7.46 7.27 2090 260 67.2 224 4300 650 160 0.12 

RFGW I75-MZ2 11-Jul-05 27.31 8.8 6.51 1920 223 60.7 137 3600 530 38 0.09 

RFGW I75-MZ2 3-Oct-05 29.14 7.36 7.27 2180 284 67.6 260 4300 580 180 0.48 

RFGW I75-MZ2 28-Dec-05 28.11 7.61 7.53 2090 248 62.2 215 3800 590 180 0.14 

RFGW I75-MZ3 31-Jan-05 29.16 7.38 34.84 11200 1150 363 487 20000 2900 104 0.68 

RFGW I75-MZ3 11-Apr-05 29.74 7.52 34.28 11000 1270 382 516 20000 2800 100 0.22 

RFGW I75-MZ3 11-Jul-05 30.73 7.39 34.98 10900 1170 373 481 19000 4600 100 4.45 

RFGW I75-MZ3 3-Oct-05 29.25 7.45 33.34 11200 1290 399 560 19000 3200 110 0.44 

RFGW I75-MZ3 28-Dec-05 31.39 7.47 34.89 10900 1290 401 547 20000 2700 120 4.94 

RFGW IWSD-MZ2 4-Feb-05 28.35 8.02 2.5 661 112 24.7 125 1300 520 111 0.11 

RFGW IWSD-MZ2 20-Apr-05 28.77 8.08 2.63 693 112 24.2 128 1200 550 110 5.13 
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Table D 1 (Cont.) 
 

Project 

Code 
Station ID 

Collected 

date 
T (C˚) pH Salinity Na

+
 Mg

2+
 K

+
 Ca

2+
 Cl

-
 SO4

2-
 Alka DO 

RFGW IWSD-MZ2 19-Sep-05 28.72 7.63 1.71 655 114 25.2 130 1000 390 110 1.71 

RFGW IWSD-MZ2 27-Dec-05 28.5 7.97 2.57 697 126 25.2 147 1200 500 130 0.16 

RFGW IWSD-MZ3 4-Feb-05 28.38 8.18 4.18 1140 197 39.8 180 2000 860 38 0.14 

RFGW IWSD-MZ3 20-Apr-05 24.48 8.09 4.32 1160 195 39 184 2000 880 120 0.96 

RFGW IWSD-MZ3 12-Jul-05 28.64 8.09 4.09 1080 180 38.5 162 2000 760 130 2.6 

RFGW IWSD-MZ3 6-Oct-05 29.51 8.24 3.91 1100 196 35 190 1900 690 110 0.13 

RFGW IWSD-MZ3 27-Dec-05 28.51 8.63 3.78 1060 149 38.9 158 1900 550 28 0.36 

RFGW L-6433 27-May-05 28.38 7.25 2.8 652 127 22.4 149 1400 267 150 1.76 

RFGW L-6433 15-Jul-05 28.58 7.33 2.83 741 124 21.9 139 1500 330 130 0.18 

RFGW L-6436 15-Jul-05 27.11 6.98 24.84 7710 847 205 615 14000 1500 130 0.11 

RFGW L2-PW1 2-Feb-05 28.2 8.44 1.42 329 76.2 12.7 69.1 670 320 67 0.16 

RFGW L2-PW1 21-Apr-05 27.09 7.94 2.09 488 96.8 17.6 96.2 990 390 90 0.04 

RFGW L2-PW1 22-Jun-05 25.97 7.85 1.96 484 96 18 92 1000 1800 86 0.25 

RFGW L2-PW2 2-Feb-05 25.79 7.91 1.43 336 71.8 13.5 76.7 640 320 80 0.11 

RFGW L2-PW2 28-Apr-05 25.72 7.9 1.58 372 77.3 14.9 83.9 660 280 71 0.04 

RFGW L2-PW2 22-Jun-05 25.7 7.69 1.54 369 77 14.7 82.1 730 1500 83 0.26 

RFGW LAB-MZ2 3-Feb-05 29.85 8.04 1.19 282 64.2 13.5 68.2 460 310 83 5.2 

RFGW LAB-MZ2 19-Apr-05 28.84 8.03 1.22 277 64.6 13.5 68.6 460 360 80 0.02 
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Table D 1 (Cont.) 
 

Project 

Code 
Station ID 

Collected 

date 
T (C˚) pH Salinity Na

+
 Mg

2+
 K

+
 Ca

2+
 Cl

-
 SO4

2-
 Alka DO 

RFGW LAB-MZ2 22-Jun-05 30.06 7.94 1.18 282 64.6 14 69.6 490 1600 87 0.31 

RFGW LAB-MZ2 28-Dec-05 29.65 7.94 1.18 267 61.6 12.9 67.3 460 350 94 0.08 

RFGW LAB-MZ3 3-Feb-05 31.82 7.49 16.62 4830 604 164 501 9500 1800 85 0.38 

RFGW LAB-MZ3 27-Apr-05 31.91 7.39 16.93 4870 614 154 511 9800 1700 87 0.02 

RFGW LAB-MZ3 22-Jun-05 31.19 7.27 15.46 4610 587 147 497 8900 1800 94 0.85 

RFGW LAB-MZ3 28-Dec-05 31.77 7.32 15.89 4780 637 152 547 8500 1800 91 0.07 

RFGW MF-52 9-Feb-05 28.26 7.47 2.18 549 85.2 18.1 102 1100 230 140 0.71 

RFGW MF-52 19-Apr-05 28.78 7.57 2.24 594 88 19.2 107 1100 210 150 0.01 

RFGW MF-52 29-Jun-05 28.86 7.37 2.19 577 88.7 19.4 105 1000 240 150 0.09 

RFGW MF-52 21-Sep-05 28.61 7.26 2.06 582 89 19.4 110 960 210 160 0.25 

RFGW MIU-MZ1 2-Feb-05 27.65 8.17 27.99 8520 957 295 388 15000 2100 36 1.45 

RFGW MIU-MZ1 12-Apr-05 28.07 8.45 27.43 8360 966 282 368 15000 2100 34 0.07 

RFGW MIU-MZ1 12-Jul-05 29.21 7.57 27.95 8490 969 295 472 14000 2000 90 0.11 

RFGW MIU-MZ1 29-Dec-05 28.18 8.01 27.34 8550 989 272 470 16000 2100 64 0.19 

RFGW MIU-MZ2 2-Feb-05 29.64 7.2 33.98 11200 1110 368 601 20000 2700 112 0.29 

RFGW MIU-MZ2 12-Apr-05 30.5 7.34 33.77 10400 1150 365 607 19000 2700 110 0.11 

RFGW MIU-MZ2 12-Jul-05 31.44 7.14 34.24 10600 1170 398 630 19000 2600 110 0.11 

RFGW MIU-MZ2 29-Dec-05 28.62 7.47 33.54 10800 1190 333 655 20000 2500 130 0.12 

RFGW NMC-MZL 20-Apr-05 24.65 7.96 35.03 10600 1180 329 365 20000 2400 140 0.51 
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Table D 1 (Cont.) 
 

Project 

Code 
Station ID 

Collected 

date 
T (C˚) pH Salinity Na

+
 Mg

2+
 K

+
 Ca

2+
 Cl

-
 SO4

2-
 Alka DO 

RFGW NMC-MZL 29-Jun-05 25.16 7.94 33.88 10600 1140 324 316 17000 2400 140 1.07 

RFGW NMC-MZL 17-Oct-05 25.14 7.7 24.4 8470 946 292 345 16000 1800 150 1.65 

RFGW NMC-MZU 20-Apr-05 24.69 7.89 1.99 484 96.8 20.4 78.6 1100 200 160 0.05 

RFGW NMC-MZU 29-Jun-05 24.88 7.74 1.94 462 91 20 70.3 990 210 160 0.18 

RFGW NMC-MZU 17-Oct-05 24.78 7.51 1.87 490 97.4 21 76.5 950 190 170 2 

RFGW OKF-42 8-Feb-05 25.55 7.6 0.36 38.5 46.6 9.8 52.2 54 
 

182 0.22 

RFGW OKF-42 28-Apr-05 26.4 7.69 0.36 39.3 39 5.1 34.7 54 90 190 0.08 

RFGW OKF-42 21-Jun-05 26.54 7.53 0.35 40.4 38.5 4.74 36.9 52 120 180 0.56 

RFGW OKF-42 10-Oct-05 26.27 7.80 0.35 40.4 38.1 5.1 36.2 50 97 190 0.13 

RFGW OSF-100 7-Feb-05 23.11 8.19 0.15 - 9.03 2.01 37.1 4.5 68 62 0.32 

RFGW OSF-100 28-Apr-05 23.4 8.31 0.14 - 9.34 2.52 38.7 6.8 56 74 0.36 

RFGW OSF-100 1-Jul-05 23.38 8.09 0.15 - 9.3 1.44 38.7 4.2 64 72 3.95 

 

  



 

240 

Table D 2 Florida aquifer quality data collected during year 2006. Salinity in ppt (‰), major ion concentrations in mg/L 

(DBHYDRO) 

Project 

Code 
Station ID 

Collected 

date 
T (C˚) pH Salinity Na+ Mg

2+
 K

+
 Ca

2+
 Cl

-
 SO4

2-
 Alka DO 

RFGW BICY-MZ1 27-Mar-06 27.89 8.86 3.35 977 129 45.3 71.8 1900 470 100 0.11 

RFGW BICY-MZ1 15-Jun-06 29.15 8.81 3.66 1080 121 45 43 1700 390 48 0.92 

RFGW BICY-MZ1 24-Oct-06 26.92 9.28 3.96 1200 140 44 59 1900 450 50 7.16 

RFGW BICY-MZ2 27-Mar-06 28.11 7.68 5.2 1460 179 60.9 147 2700 720 160 0.15 

RFGW BICY-MZ2 15-Jun-06 28.87 7.58 5.22 1580 174 63 144 2700 590 150 1.57 

RFGW BICY-MZ2 24-Oct-06 26.66 7.67 3.64 1100 130 43 120 1700 520 160 6.28 

RFGW BICY-MZ3 27-Mar-06 28.29 7.36 27.15 8000 845 256 562 17000 1400 140 0.11 

RFGW BICY-MZ3 15-Jun-06 28.63 7.46 27.14 9180 911 284 617 16000 1500 140 0.08 

RFGW BICY-MZ4 27-Mar-06 30.77 6.76 26.71 10900 1160 408 808 21000 2700 190 0.4 

RFGW BICY-MZ4 15-Jun-06 31.02 6.89 34.16 11100 1120 407 786 20000 2700 190 0.46 

RFGW BRY-MW 9-Jan-06 30 7.14 2.51 666 120 24.7 126 1300 390 100 0.11 

RFGW BRY-MW 30-Mar-06 25 7.5 2.46 
   

125 1300 390 110 0.19 

RFGW BRY-MW 28-Jun-06 29.78 7.67 2.63 626 114 25 140 1300 430 120 0.19 

RFGW BRY-MW 25-Sep-06 30.1 7.55 2.59 640 120 27 
 

1300 410 100 0.35 

RFGW BSU-MZL 30-Mar-06 29.5 7.5 32.94 
    

20000 400 120 3.04 

RFGW BSU-MZL 22-Jun-06 32.97 7.45 33.66 10700 1100 392 
 

19000 2800 120 0.42 

RFGW BSU-MZL 31-Oct-06 31.83 7.19 32.41 11000 1200 540 671 20000 2700 110 1.95 

RFGW BSU-MZU 30-Mar-06 32.95 7.52 1.5 
   

740 760 230 140 0.16 

RFGW BSU-MZU 22-Jun-06 32.3 7.4 1.53 358 86.7 17 
 

710 260 140 0.19 
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Table D 2 (Cont.) 
 

Project 

Code 
Station ID 

Collected 

date 
T (C˚) pH Salinity Na+ Mg

2+
 K

+
 Ca

2+
 Cl

-
 SO4

2-
 Alka DO 

RFGW BSU-MZL 31-Oct-06 31.83 7.19 32.41 11000 1200 540 671 20000 2700 110 1.95 

RFGW BSU-MZU 30-Mar-06 32.95 7.52 1.5 
   

740 760 230 140 0.16 

RFGW BSU-MZU 22-Jun-06 32.3 7.4 1.53 358 86.7 17 
 

710 260 140 0.19 

RFGW BSU-MZU 31-Oct-06 32.19 7.61 1.57 370 89.1 18 
 

760 240 170 8.75 

RFGW DF-4 11-Jan-06 21.69 8.19 3.37 1030 144 35.4 121 1700 506 130 0.17 

RFGW DF-4 11-Apr-06 21.8 7.68 3.43 1110 158 40.3 129 1900 540 130 0.08 

RFGW DF-4 9-Jun-06 22.69 8.01 3.45 1030 120 36 100 1770 522 130 0.51 

RFGW DF-4 13-Oct-06 22.55 7.59 3.43 968 130 36 110 1900 570 130 3.04 

RFGW DF-5 11-Jan-06 23.16 10.18 3.02 921 60.7 40 154 1600 428 -5 0.13 

RFGW DF-5 11-Apr-06 22.75 9.6 3.06 1060 77.5 50.8 164 1700 460 9 0.06 

RFGW DF-5 9-Jun-06 23.19 9.73 3.1 1090 61 42 135 1620 450 -5 0.53 

RFGW DF-5 13-Oct-06 23.56 9.57 3.08 883 68 42 150 1700 500 12 2.41 

RFGW ENP-100 12-Jan-06 27.89 7.5 5.1 1590 183 59 164 2810 469 170 0.37 

RFGW ENP-100 29-Mar-06 28.04 7.4 5.06 1470 177 60 156 3400 580 170 0.13 

RFGW ENP-100 8-Jun-06 28.07 7.5 5.19 1580 157 61 140 2790 477 170 0.22 

RFGW ENP-100 13-Oct-06 28.29 7.23 5.22 1440 170 59 160 3200 550 160 4.58 

RFGW FPU-MZL 15-Mar-06 24.44 8.1 22.96 6570 787 247 307 14000 1600 160 0.22 

RFGW FPU-MZL 1-Jun-06 24.51 7.78 22.95 6700 790 270 310 13000 1700 160 1.22 
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Table D 2 (Cont.) 
 

Project 

Code 
Station ID 

Collected 

date 
T (C˚) pH Salinity Na+ Mg

2+
 K

+
 Ca

2+
 Cl

-
 SO4

2-
 Alka DO 

RFGW FPU-MZL 17-Oct-06 24.66 7.94 22.46 6900 750 280 280 12000 1600 170 3.43 

RFGW FPU-MZU 15-Mar-06 24.28 8.09 1.85 518 750 22.2 70 960 190 150 0.12 

RFGW FPU-MZU 1-Jun-06 24.41 7.89 1.88 500 85.8 19 63 930 190 160 1 

RFGW FPU-MZU 17-Oct-06 24.78 7.68 1.89 550 78 21 78 930 190 180 2.4 

RFGW G-2617 12-Jan-06 26.04 7.84 2.26 613 90 24.5 80.8 1190 473 110 0.07 

RFGW G-2617 11-Apr-06 25.78 7.77 2.29 727 85 30 90.6 1100 460 110 0.14 

RFGW G-2617 28-Jun-06 25.71 7.86 2.31 616 101 26 76 1100 450 62 0.13 

RFGW G-2617 12-Oct-06 25.59 7.72 1.43 378 120 21 69 640 370 87 0.4 

RFGW G-2618 12-Jan-06 26.63 8.05 1.4 370 69 19.1 64.5 641 347 87 0.09 

RFGW G-2618 11-Apr-06 25.8 7.91 1.42 416 110 21.8 71.5 630 340 92 0.22 

RFGW G-2618 28-Jun-06 24.76 8.04 1.51 362 65.7 20 61 610 340 86 0.09 

RFGW G-2618 12-Oct-06 25.51 7.79 2.32 626 76.9 26 82 1100 450 60 1.05 

RFGW G-2619 12-Jan-06 26.1 9.05 1.95 576 63 24.4 78.4 976 476 100 0.09 

RFGW G-2619 11-Apr-06 25.54 8.85 1.97 587 110 26.5 49.2 1000 320 35 0.15 

RFGW G-2619 28-Jun-06 25.71 7.92 2.28 565 71 26 46 960 330 52 0.09 

RFGW G-2619 12-Oct-06 25.52 9.03 1.97 579 91.6 26 43 1100 340 44 0.57 

RFGW I75-MZ1 27-Mar-06 27.21 7.94 2.99 822 89.5 41.5 116 1600 480 130 0.36 

RFGW I75-MZ1 14-Jun-06 29.25 7.9 2.99 848 83 37 106 1500 460 210 0.76 

RFGW I75-MZ1 23-Oct-06 28.15 7.69 3.06 930 83 35 120 1400 500 140 5.55 

 



 

243 

Table D 2 (Cont.) 
 

Project 

Code 
Station ID 

Collected 

date 
T (C˚) pH Salinity Na+ Mg

2+
 K

+
 Ca

2+
 Cl

-
 SO4

2-
 Alka DO 

RFGW I75-MZ2 27-Mar-06 29.05 7.39 7.16 2100 98 73.4 257 4200 680 190 0.15 

RFGW I75-MZ2 14-Jun-06 28.69 7.56 7.45 2220 132 76 223 4000 650 170 2.83 

RFGW I75-MZ2 23-Oct-06 29.17 7.27 7.45 1900 128 68 220 3800 680 160 4.85 

RFGW I75-MZ3 27-Mar-06 31.47 7.4 34.22 9860 140 372 492 21000 2700 110 1.19 

RFGW I75-MZ3 14-Jun-06 29.91 7.47 34.04 11200 140 486 414 20000 2700 78 1.1 

RFGW I75-MZ3 23-Oct-06 30.37 7.29 34.9 11000 281 470 460 20000 2600 110 5.4 

RFGW IWSD-MZ2 21-Mar-06 30.54 8.52 2.44 669 270 24.3 90.6 1200 460 38 0.14 

RFGW IWSD-MZ2 15-Jun-06 29.31 8.03 2.53 668 270 26 129 1200 520 120 0.96 

RFGW IWSD-MZ2 20-Oct-06 29.18 7.68 2.57 690 1160 24 130 1200 530 130 2.6 

RFGW IWSD-MZ3 21-Mar-06 26.1 8.37 3.79 1020 1300 42.4 135 2000 760 26 0.11 

RFGW IWSD-MZ3 15-Jun-06 29.59 8.04 3.81 1090 1300 42 176 1900 770 110 1.46 

RFGW IWSD-MZ3 20-Oct-06 29.32 8.06 3.91 1000 97.9 38 160 1700 790 120 3.39 

RFGW L-6433 6-Jan-06 27.72 7.49 2.76 716 110 23.9 156 1470 268 150 0.12 

RFGW L-6433 31-Mar-06 28.02 7.29 2.8 673 110 21.3 131 1600 280 150 0.11 

RFGW L-6433 16-Jun-06 30.46 7.4 2.77 692 178 24 145 1500 280 140 0.27 

RFGW L-6433 29-Sep-06 28.99 7.35 4.2 680 185 23 140 1500 260 140 0.7 

RFGW L-6436 6-Jan-06 30.27 7.04 24.23 7260 170 223 577 14000 1600 150 0.42 

RFGW L-6436 31-Mar-06 29.62 7.02 24.01 7310 150 198 507 15000 1800 130 0.29 

RFGW L-6436 16-Jun-06 30.5 7.09 24.18 7550 135 263 490 14000 1700 140 0.68 
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Table D 2 (Cont.) 
 

Project 

Code 
Station ID 

Collected 

date 
T (C˚) pH Salinity Na+ Mg

2+
 K

+
 Ca

2+
 Cl

-
 SO4

2-
 Alka DO 

RFGW L-6436 29-Sep-06 31.37 7.06 25.07 7000 119 250 550 14000 1700 140 0.76 

RFGW L2-PW1 9-Jan-06 26.28 7.65 1.92 491 129 18.2 95 951 367 91 0.11 

RFGW L2-PW1 20-Mar-06 26.29 7.51 1.97 482 120 17.3 91.2 930 370 93 0.24 

RFGW L2-PW1 28-Jun-06 27.13 7.96 2.13 463 800 17 74 880 360 75 0.21 

RFGW L2-PW1 26-Sep-06 26.35 8 1.97 470 721 18 86 920 370 86 0.31 

RFGW L2-PW2 9-Jan-06 26.58 7.49 1.57 387 760 15 85 730 350 90 0.09 

RFGW L2-PW2 20-Mar-06 26.89 7.47 1.65 398 97 15 88.2 810 350 93 0.18 

RFGW L2-PW2 28-Jun-06 25.74 7.91 1.59 297 91.1 13 64 570 320 160 0.18 

RFGW L2-PW2 26-Sep-06 26.27 7.75 1.6 420 85 16 87 750 340 84 1.27 

RFGW LAB-MZ1 21-Mar-06 28.99 7.95 1.56 396 93 14.9 80.7 730 380 86 0.14 

RFGW LAB-MZ1 28-Jun-06 28.67 8.06 1.69 385 78.4 15 76 690 370 85 0.02 

RFGW LAB-MZ1 20-Oct-06 31.22 7.73 1.58 360 79.2 15 80 670 350 
 

1.74 

RFGW LAB-MZ2 21-Mar-06 29.48 7.96 1.17 274 64 13.1 68.7 460 350 96 0.14 

RFGW LAB-MZ2 28-Jun-06 28.89 8.05 1.41 274 78 13 62 440 350 88 0.1 

RFGW LAB-MZ2 20-Oct-06 31.09 7.78 1.18 270 94 13 66 440 330 90 2.52 

RFGW LAB-MZ3 21-Mar-06 30.26 7.25 14.39 4200 72.5 140 474 8200 1700 93 0.13 

RFGW LAB-MZ3 20-Oct-06 32.53 7.19 17.01 4900 67 170 430 9000 1900 89 4.46 

RFGW MIU-MZ1 30-Mar-06 32.83 7.63 27.25 8570 68 311 479 17000 2100 100 0.13 
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Table D 2 (Cont.) 
 

Project 

Code 
Station ID 

Collected 

date 
T (C˚) pH Salinity Na+ Mg

2+
 K

+
 Ca

2+
 Cl

-
 SO4

2-
 Alka DO 

RFGW MIU-MZ1 14-Jun-06 29.08 7.63 27.17 8710 62.2 349 358 16000 2100 76 3.02 

RFGW MIU-MZ1 23-Oct-06 28.43 8.08 27.9 8200 59 340 400 16000 2100 40 0.2 

RFGW MIU-MZ2 30-Mar-06 36.59 7.35 33.5 8600 60 
  

21000 2600 120 0.1 

RFGW MIU-MZ2 14-Jun-06 33.84 7.29 33.38 11200 540 469 470 19000 2600 120 
 

RFGW MIU-MZ2 23-Oct-06 32.41 7.21 34.32 11000 600 470 670 20000 2600 110 3.77 

RFGW NMC-MZL 15-Mar-06 25.16 7.98 33.24 9750 963 349 383 20000 2400 150 0.08 

RFGW NMC-MZL 31-May-06 26.13 7.82 33.5 4900 950 200 200 14000 48 150 4.08 

RFGW NMC-MZL 26-Oct-06 24.93 8.23 22.94 9800 940 440 380 19000 2400 140 2.86 

RFGW NMC-MZU 15-Mar-06 24.72 7.71 1.91 496 1120 21.6 76.2 1000 200 160 0.06 

RFGW NMC-MZU 31-May-06 26.89 8.05 2.03 470 1200 22 73 960 220 160 4.9 

RFGW NMC-MZU 26-Oct-06 24.7 8.03 1.95 510 1100 22 78 970 200 160 2.85 

RFGW OKF-42 17-Mar-06 25.51 7.47 0.35 38.5 1090 5.4 30.8 54 87 190 0.25 

RFGW OKF-42 4-Jun-06 25.73 7.59 0.43 41 600 6.2 30 55 72 200 1.05 

RFGW OKF-42 3-Oct-06 26.73 7.57 0.34 38 1100 4.7 35 52 99 190 0.59 

RFGW OSF-100 8-Jan-06 23.2 8.27 0.14 3.23 91 1.87 39.1 4.6 64 77 0.64 

RFGW OSF-100 16-Mar-06 21.7 7.86 0.14 4.01 100 2.61 37.3 5.7 67 72 1.88 

RFGW OSF-100 30-Jun-06 23.2 8.06 0.24 3.2 38.4 1.6 36 9.4 66 70 3.76 

RFGW OSF-100 5-Oct-06 23.68 7.93 0.14 3.4 34 1.7 39 4.4 67 70 3.7 
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APPENDIX E 

EFPC Soil Physical and Chemical Characteristics 

The Oak Ridge Reservation (ORR) (Figure E 1) was built as a part of Manhattan 

Project to develop the nuclear weapons during World War II in Tennessee, USA, in 1942. 

There were four plants constructed in ORR: K-25, S-50, Y-12 and X-10. X-10 plant is 

now known as Oak Ridge National Laboratory (ORNL). During 1940s-1950s, the 

Lithium isotope separation was performed at Y-12 plant. The separation using lithium 

amalgam which Li dissolved in Hg. As a result 11 million kg of Hg were used and more 

than 200,000 kg of Hg were accidentally released to the environment.  

 

Figure E 1 Map of ORR and soil sample location (modified after www.esd.ornl.gov) 

The released Hg was found accumulated in soil, sediment, bedrock which are continued 

sources for East Fork Poplar Creek (EFPC) that locates downstream of the Y-12 plant. 

The high concentration of Hg in EFPC raised the public concern on wild life and human 

health on contacting the contaminated water. Many attempts and remediation plans are 

Y-12

ORR boundary

Y-12 plant

Creeks

Soil sample location
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made to remove and reduce the Hg concentration in the creek. To best understand the fate 

and transport of Hg in the creek, the EFPC soil physical and chemical property data 

which play important role to Hg fate and transport were collected and described in this 

section. 

The ORR soils are found consisted of properties sandstone, siltstone, and 

limestone. In this section the soil properties collected from Driese et al., 2001 are 

categorized by the type of soil described in Table E 1 – E 4 for top soil, sandstone, 

siltstone, and limestone respectively 

Table E 1Top soil property (Driese et al., 2001) 

Parameter Soil Property 

Geologic/Pedologic Material 

Soil Zone (A and Bw horizons); thin 

(20–60 cm), loamy-skeletal, mixed, 

thermic, Typic Dystrochrept (Soil Survey 

Staff 1990) 

Detrital Mineralogy 

40–60% monocrystalline quartz; 2% 

glauconite; 2–5% K-feldspar; ,1– 

2% plagioclase; ,2% muscovite 1 

biotite; ,1% carbonate allochems; 

,2% heavy minerals 

Pedogenic Features 

25–40% lithorelicts (saprolite clasts); 

2–6% Fe/Mn-oxide/oxyhydroxide 

glaebules; 1–20% very coarse to fine 

roots; ,1% pedogenic clay 

Matrix Porosity 

Very high (40–50%), mostly intergranular 

and in root charnels; decreases 

progressively downward to contact 

with saprolite 

Fracture Porosity None; no soil fractures are apparent in 

field or in thin section 
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Table E 2 Sandstone soil property (Driese et al., 2001) 

Parameter Soil Property 

Geologic/Pedologic Material 

Sandstone saprolite derived from 

weathering 

of fractured, very fine-grained, 

parallel- to ripple cross-laminated, 

glauconitic, peloidal, feldspathic 

quartz arenite; estimated 20% of saprolite 

section 

Detrital Mineralogy 

55–65% monocrystalline quartz; 5–8% 

glauconite; 5–10% K-feldspar; ,5% 

plagioclase; 2–5% muscovite 1 biotite; 

,2% carbonate allochems; 

,2% heavy minerals 

Pedogenic Features 

vadose pedogenic clay cements at detrital 

grain contacts (meniscus) and on 

undersides of grains (pendant); pedogenic 

clay infillings of fractures; Fe/ 

Mn oxide and oxyhydroxide coatings 

on grain surfaces and in fractures; 

,1% roots 

Matrix Porosity 

High (20–30%), mostly in intergranular 

pores and to a lesser degree in dissolution 

intragranular (grain moldic) 

pores; matrix pore apertures range 

from 1–100 mm, with modal size in 

the 20–50 mm size range 

Fracture Porosity 

Few fracture pores (,5%) unfilled 

with pedogenic clays, with average 

spacing of 0.5–5 cm; fracture apertures 

(pre-clay infill) range from 5.0 

mm to 0.5 mm, but open fractures 

range from 1–10 mm 
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Table E 3 Siltstone soil property (Driese et al., 2001) 

Parameter Soil Property 

Geologic/Pedologic Material 

Siltstone/shale saprolite derived from 

weathering of fractured, laminated to 

weakly bioturbated, illitic to chloritic 

clayey siltstone to silty shale; estimated 

50% of saprolite section 

Detrital Mineralogy 

matrix consists of 50–80% illite, with 

subordinate chlorite; 10–30% 

monocrystalline 

quartz; 5–10% detrital biotite 

and muscovite; ,1% glauconite; 

,1% heavy minerals 

Pedogenic Features 

abundant pedogenic clay random 

(disordered) 

smectite/chlorite or smectite/ 

vermiculite; pedogenic clay and 

Fe/Mn oxide and oxyhydroxide porefillings 

and coatings of fractures; 2– 

5% roots 

Matrix Porosity 

Probably high (30–50%), but cannot be 

resolved with petrographic microscope; 

matrix pore apertures probably 

,1 mm 

Fracture Porosity 

Common fracture pores (10–20%), 

with average spacing of 0.5–3 cm; 

fracture apertures (pre-clay infill) 

range from 5.0 mm to 1.5 mm, with 

modal size of 10–20 mm for open 

fracture pores 
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Table E 4 Limestone soil property (Driese et al., 2001) 

Parameter Soil Property 

Geologic/Pedologic Material 

Limestone saprolite derived from 

weathering 

of fractured, intraclastic rudstone 

to floatstone that consists of 0.5–10 

cm diameter, discoidal intraclasts 

comprised 

of sandy, peloidal and skeletal 

lime grainstone to packstone; estimated 

30% of saprolite section 

Detrital Mineralogy 

matrix consists of mixture of 80–90% 

illite and random (disordered) smectite/ 

chlorite; 10–40% monocrystalline 

quartz; 2–5% detrital biotite and 

muscovite; 95% glauconite; ,1% 

heavy minerals 

Pedogenic Features 

abundant pedogenic clay random 

(disordered) 

smectite/chlorite or smectite/ 

vermiculite; pedogenic clay and 

Fe/Mn oxide and oxyhydroxide porefillings 

and coatings of fractures; 2– 

5% roots 

Matrix Porosity 

High (30–50%), includes large root 

pores (up to 5 mm) in matrix, but 

many other matrix pores cannot be 

resolved with petrographic microscope; 

most matrix pore apertures 

probably ,5 mm 

Fracture Porosity 

Few fracture pores (,5%) unfilled 

with pedogenic clays, with average 

spacing of 0.5–5.0 cm; fracture apertures 

(pre-clay infill) range from 5.0 

mm to 2 mm 
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The EFPC soil properties were obtained from Han et al. (2012). The soil samples 

included EFPC floodplain surface soil (n = 23), EFPC bank soil (n = 3), sediment and 

sediment soil profile (n = 10). Han et al. (2012) reported that the soil samples were 

analyzed for their mineral compositions: Fe2O3, Mn, and Carbon and the cation exchange 

capacity (CEC) (Table E 5). The soil Hg concentrations as cinnabar-Hg, noncinnabar-Hg, 

and total-Hg were also analyzed (Table E 6). 

Table E 5 EFPC Soil composition (Han et al., 2012) 

Soil type 
Depth 

cm 

Fe2O3 

% 

Mn 

% 

CEC 

cmol/kg 

Carbon 

% 

pH 

(range) 

Surface soil 0-20 2.45 0.11 18.50 4.44 7.04-7.46 

Sediment - 2.5 0.14 7.30 2.78 7.52 

Bank soil 

0.10 1.99 0.09 13.31 2.09 7.32-7.46 

50-60 2.91 0.08 6.96 1.29 7.40-7.84 

Sediment soil 

profile 

0-10 2.85 0.11 12.33 3.10 7.38-7.51 

50-60 2.15 0.08 11.33 1.34 7.37-7.99 

100-110 2.79 0.08 10.20 2.48 7.47-7.64 
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Table E 6 Concentrations of cinnabar mercury, non-cinnabar mercury and total mercury 

in bank soils and sediment of Lower East Fork Poplar Creek, Oak Ridge, TN obtained 

from Han et al. (2012) 

Soil Type 
Depth 
cm 

 
Noncinnabar 

-Hg 

mg/kg 

Cinnabar 

-Hg 

mg/kg 

Total 

Hg 

mg/kg 

Noncinnabar 

-Hg 

% 

Cinnabar 

-Hg 

% 

Bank soil 

0-10 Average 51.4 1.0 52.3 98.2 1.8 

 
Standard 

deviation 
4.7 0.7 5.3 1.1 1.1 

 Maximum 56.3 1.7 58.1 98.9 3.0 

 Minimum 47.0 0.5 47.5 97.0 1.1 

50-60 Average 23.2 17.9 41.1 63.0 37.0 

 
Standard 

deviation 
26.9 28.5 20.0 53.9 53.9 

 Maximum 52.9 50.8 53.9 98.2 99.0 

 Minimum 0.5 1.0 18.1 1.0 1.8 

Sediment -  72.5 1.7 74.2 97.7 2.3 

 

It can be seen in Table E 5 that the EFPC soils evidentially consists of minerals 

which are potentially absorb the Hg. Fe2O3 content in the bank soil increased with depth 

while there is no trend for sediment profile soil. Mn mineral concentrations show the 

decrease trend with depth for both bank and sediment profile soils. 

Table E 6 shows the Hg concentrations in the EFPC soil, the data indicated that, 

for the bank soil, the noncinnabar-Hg decreases with depth while the cinnabar-Hg 

increases with depth. For the sediment soil, the Hg content is as high as 97.7 mg/kg-soil 

and 97% Hg content is noncinnabar-Hg.  
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APPENDIX F 

ENP Soil Physical and Chemical Characteristics 

Everglades National Park (ENP), FL, is a unique wetland environment with a 

specific ecosystem and wildlife. The area consists of the freshwater, mangrove and 

brackish water. The major soil type of this area is peat soil, which consists of organic 

carbon, and different minerals (e.g., S mineral, Fe mineral and CaCO3). The soil 

characteristics (physical and chemical characteristics) of the Shark River Slough (SRS), 

SRS1 to SRS6 are the areas of concern for Hg transport (Figure F 1), collected from 

relevant literature and websites (i.e., DBHYDRO and Florida coastal everglades long 

term ecological research websites) are described in this section. 

 

Figure F 1 Map of ENP and soil collection sites (modified after Florida coastal 

everglades long term ecological research website)  
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The soil characteristics of SRS1 to SRS6 consist of organic, Fe and S minerals 

collected during 2004 – 2010 are shown in Tables F 1 to F 6 respectively. The percentage 

of CaCO3 mineral content in soils of the sites (SRS1 to SRS6) collected during 2000 – 

2001 is shown in Table F 7. 

Table F 1 SRS1 soil characteristics collected during 2004 – 2010 (DBHYDRO and 

Florida coastal everglades long term ecological research websites) 

Date 
ρb 

g/cc 

Organics 

% 

Extractable Fe 

µmol/cc 

Total S 

µmol/cc 

15-Aug-04 0.14 30.96 14.7 7.67 

15-Aug-04 0.06 38 6.85 7.46 

15-Aug-04 0.13 39.28 10.85 10.19 

8-Aug-05 0.43 17.51 18.91 2.28 

8-Aug-05 0.41 16.48 12.16 2.66 

8-Aug-05 0.31 15.65 7.85 2.63 

1-Aug-06 0.11 54.03 5.09 18.93 

1-Aug-06 0.10 66.05 4.89 13.14 

1-Aug-06 0.07 65.79 3.83 15.39 

5-Aug-07 0.13 76.33 1.35 5.94 

5-Aug-07 0.14 77.7 1.37 11.7 

5-Aug-07 0.17 72.07 1.85 11.4 

10-Aug-08 0.16 78.19 92.25 1.27 

10-Aug-08 0.16 67.68 65.15 2.99 

10-Aug-08 0.15 74.44 57.05 15.21 

10-Aug-08 0.13 75.08 78.44 2.53 

15-Aug-09 0.13 68.39 5.31 16.85 

15-Aug-09 0.17 70.07 6.19 14.86 

15-Aug-09 0.10 76.54 3.92 23.46 

15-Aug-10 0.10 83.02 0.05 7.12 

15-Aug-10 0.11 75.68 0.06 14.37 

15-Aug-10 0.13 71.26 0.02 9.21 
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Table F 2 SRS2 soil characteristics collected during 2004 – 2010 (DBHYDRO and 

Florida coastal everglades long term ecological research websites) 

Date 
ρb 

g/cc 

Organics 

% 

Extractable F 

µmol/cc 

Total S 

µmol/cc 

15-Aug-04 0.11 40.93 12.28 3.43 

15-Aug-04 0.12 39.93 15.23 4.03 

15-Aug-04 0.09 38.67 9.17 4.14 

8-Aug-05 0.10 83.71 4.75 0.61 

8-Aug-05 0.10 89.19 5.87 0.94 

8-Aug-05 0.11 85.71 6.33 1.49 

1-Aug-06 0.07 85.85 2.74 1.03 

1-Aug-06 0.07 86.35 2.58 2.63 

1-Aug-06 0.06 83.98 2.38 2.31 

5-Aug-07 0.11 85.74 0.95 6.66 

5-Aug-07 0.10 82.65 1.04 5.29 

5-Aug-07 0.12 87.63 0.77 7.31 

10-Aug-08 0.07 89.59 30.62 4.49 

10-Aug-08 0.11 86.39 9.64 5.27 

10-Aug-08 0.08 86.83 22.06 0.57 

15-Aug-09 0.14 82.46 4.14 7.84 

15-Aug-09 0.16 86.64 4.25 7.96 

15-Aug-09 0.15 82.9 6.28 10.11 

15-Aug-10 0.09 85 0 6.49 

15-Aug-10 0.08 87.3 0.02 7.76 
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Table F 3 SRS3 soil characteristics collected during 2004 – 2010 (DBHYDRO and 

Florida coastal everglades long term ecological research websites) 

Date 
ρb 

g/cc 

Organic 

%s 

Extractable Fe 

µmol/cc 

Total S 

µmol/c 

15-Aug-04 0.11 41.29 10.48 1.35 

15-Aug-04 0.11 41.54 9.17 1.55 

15-Aug-04 0.08 40.69 8.64 1.91 

8-Aug-05 0.10 86.48 5.65 0.67 

8-Aug-05 0.09 86.44 5.22 0.56 

8-Aug-05 0.07 87.47 5.14 1.07 

1-Aug-06 0.04 86.49 2.33 1.25 

1-Aug-06 0.04 87.87 1.89 1.28 

1-Aug-06 0.03 86.23 1.71 1.57 

5-Aug-07 0.09 87.38 0.77 1.35 

5-Aug-07 0.09 88.37 0.83 2.18 

5-Aug-07 0.08 87.09 0.72 1.39 

10-Aug-08 0.13 88.15 19.27 1.51 

10-Aug-08 0.14 87.96 22.71 1.27 

10-Aug-08 0.10 88.57 15.15 1.58 

15-Aug-09 0.15 86.73 3.84 2.83 

15-Aug-09 0.15 87.32 3.48 1.22 

15-Aug-09 0.15 86.89 3.45 1.25 

15-Aug-10 0.10 88.27 0.02 0.82 

15-Aug-10 0.10 87.35 0 1.2 

15-Aug-10 0.08 88.26 0 1.75 
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Table F 4 SRS4 soil characteristics collected during 2004 – 2010 (DBHYDRO and 

Florida coastal everglades long term ecological research websites) 

Date 
ρb 

g/cc 

Organics 

% 

Extractable Fe 

µmol/cc 

Total S 

µmol/cc 

15-Aug-04 0.14 41.49 4.37 19.3 

15-Aug-04 0.17 40.96 6.48 13.98 

15-Aug-04 0.14 40.37 9.64 4.1 

8-Aug-05 0.13 86.59 5.36 0.66 

8-Aug-05 0.20 91.48 10.22 1 

8-Aug-05 0.13 89.32 8.06 0.52 

1-Aug-06 0.08 86.74 1.29 5.53 

1-Aug-06 0.11 86.62 1.71 3.01 

1-Aug-06 0.08 87.31 0.93 7.39 

5-Aug-07 0.16 85.38 0.93 4.15 

5-Aug-07 0.15 85 1.05 5.87 

5-Aug-07 0.16 86.11 0.94 5.79 

10-Aug-08 0.16 86.19 13.28 0.49 

10-Aug-08 0.19 86.49 25.59 0.32 

10-Aug-08 0.16 85.38 24.74 0.31 

15-Aug-09 0.16 86.6 2.62 6.55 

15-Aug-09 0.26 48.12 3.2 7.64 

15-Aug-09 0.18 84.37 4.03 5.1 

15-Aug-10 0.13 86.29 0 3.35 
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Table F 5 SRS5 soil characteristics collected during 2004 – 2010 (DBHYDRO and 

Florida coastal everglades long term ecological research websites) 

Date 
ρb 

g/cc 

Organics 

% 

Extractable Fe 

µmol/cc 

Total S 

µmol/cc 

15-Aug-04 0.12 30.31 11.17 14.74 

15-Aug-04 0.18 29.21 11.01 33.13 

15-Aug-04 0.19 27.73 9.32 11.42 

8-Aug-05 0.17 79.67 7.19 8.84 

8-Aug-05 0.15 70.94 8.35 5.19 

8-Aug-05 0.15 61.47 9.07 4.41 

1-Aug-06 0.13 61.67 2.51 24.06 

1-Aug-06 0.27 24.65 6.33 5.1 

1-Aug-06 0.13 55.72 2.48 16.77 

1-Aug-06 0.32 17.75 5.79 18.32 

5-Aug-07 0.26 39.92 3.43 29.51 

5-Aug-07 0.22 43.83 2.58 19.19 

5-Aug-07 0.23 48.81 2.96 20.15 

10-Aug-08 0.20 67.63 17.91 2.18 

10-Aug-08 0.20 55.32 13.62 3.14 

10-Aug-08 0.25 54.55 18.76 2.28 

15-Aug-09 0.26 41.86 4.59 13.45 

15-Aug-09 0.23 62.25 2.92 13.35 

15-Aug-09 0.20 50.1 4.11 27.79 
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Table F 6 SRS6 soil characteristics collected during 2004 – 2010 (DBHYDRO and 

Florida coastal everglades long term ecological research websites) 

Date 
ρb 

g/cc 

Organics 

% 

Extractable Fe 

µmol/cc 

Total S 
 

15-Aug-04 0.49 12.83 14.92 20.16 

15-Aug-04 0.50 10.74 17.55 36.76 

15-Aug-04 0.47 9.63 16.13 15.76 

8-Aug-05 0.21 60.66 6.16 2.68 

8-Aug-05 0.19 58.44 5.41 2.49 

8-Aug-05 0.28 47.73 11.69 5.02 

1-Aug-06 0.29 24.03 7.5 40.62 

1-Aug-06 0.51 9.75 7.47 27.26 

1-Aug-06 0.19 27.98 5.27 18.47 

1-Aug-06 0.38 16.08 7.24 25.01 

5-Aug-07 0.58 17.13 5.59 36.33 

5-Aug-07 0.54 17.96 7.39 26.25 

5-Aug-07 0.58 16.25 6.55 42.06 

10-Aug-08 0.66 28.5 27.81 19.8 

10-Aug-08 0.49 18.55 33.43 12.76 

10-Aug-08 0.51 23.7 29.94 15.68 

15-Aug-09 0.59 17.27 11.91 70.42 

15-Aug-09 0.52 22.11 7.08 40.88 

15-Aug-09 0.38 30.23 9.08 51.88 

15-Aug-10 0.56 16.65 5.92 20.14 
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Table F 7 CaCO3 mineral content is soils, SRS1 to SRS6, collected during 2000 - 2001 

(DBHYDRO and Florida coastal everglades long term ecological research websites) 

Site Name Date Sample type % CaCO3 

SRS1 10-Jan-01 Sediment 62.74 

SRS2 16-Nov-00 Sediment 29.41 

SRS3 14-Nov-00 Sediment 32.15 

SRS4 17-Nov-00 Sediment 27.58 

SRS5 17-Nov-00 Sediment 55.36 

SRS6 17-Nov-00 Sediment 68.96 
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