

Microcosm Study on Mineralogical changes of post Molasses Injection with Savannah River Site (SRS) F-area Sediments

Valentina Padilla, DOE Fellow Environmental Engineering

Site Overview

- SRS reservation located in SC adjacent to the Savannah River (1950s)
- Refined nuclear materials
 - tritium & plutonium-239
- 310 square miles that included:
 - five reactors
 - two chemical separation plants
 - heavy water extraction plant
 - nuclear fuel and target fabrication facility
 - waste management facilities
- Discontinued in 1988
- Remained operational with nondefense related activities

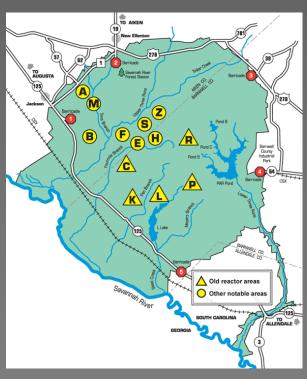
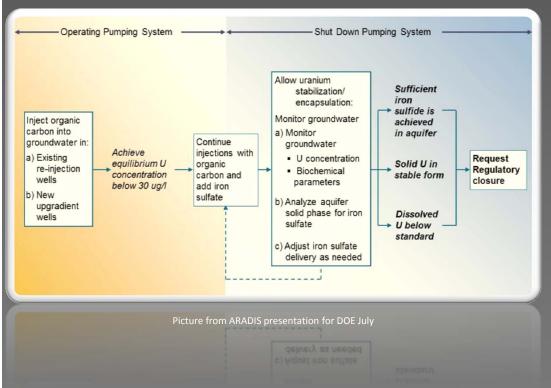


Photo by srs,gov

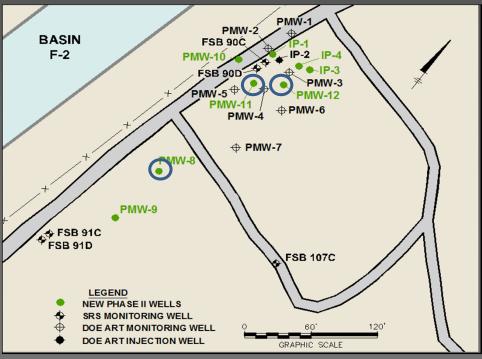
Present Condition

- Owned by the U.S Department of Energy (DOE)
- Placed on EPA's National Priority List (NPL) of contaminated sites (1989)
- The main concern: high-level-waste tanks
 - store highly radioactive liquid waste
 - considered by the DOE and the South Carolina Health and Environmental Control (SCDHEC) as "the greatest human health risk in South Carolina"
- No tank leaks



Background

- ullet Major concern ullet proximity to the Savannah River
- In situ bioremediation technologies are being researched and implemented in several underground water plumes
 - Cost effective way to deal with the groundwater contamination
- Factors that influence in situ remediation:
 - Equilibrium relations between contaminant phases
 - Biological and geochemical processes
 - Characteristics affecting reductive and oxidative conversion parameters
 - Chemical and biological availability

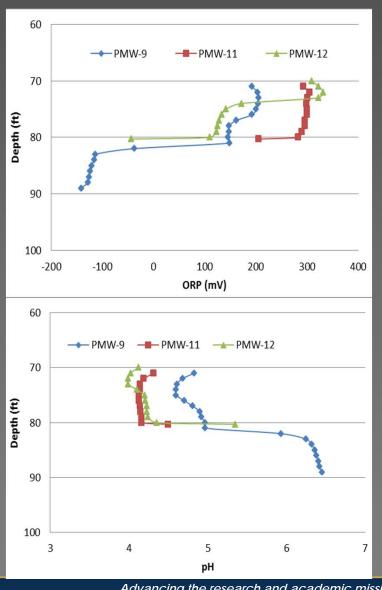

ARCADIS Technology

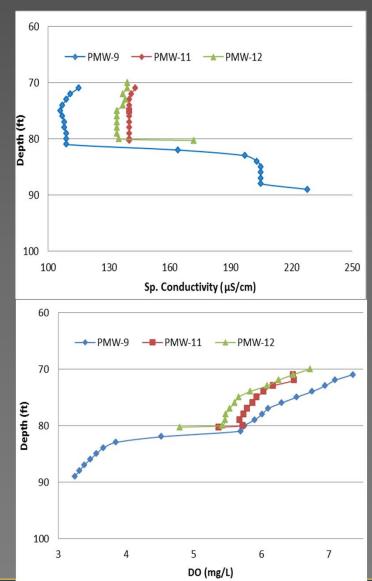
- Enhanced Anaerobic Reductive Precipitation (EARP)
 - Targets metals and radionuclides
- In situ Reactive Zones (IRZs)
- Produced anaerobic conditions through microbial action
- Uranium is a redoxsensitive radionuclide

Depth Profile Analysis

Srs gov

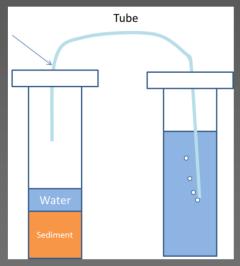
- Contamination source: radiological waste
 - Nuclear reactors
 - Support facilities





Depth Profile Analysis

Advancing the research and academic mission of Florida International University.


Previous Experiments

- 20 mL of sediment
- 10 mL solution mixture
- DI water
- 0.014 g of NaNO₃ (equivalent to 200 mg/L)
- 7 g of molasses (equivalent to 20% by weight of the solution).

Microcosm set up

Wrap tape around the tube to prevent any possible air exchange

Previous Experiments

Unsuccessful experiment \rightarrow Why?

- Slow rate of bacterial growth
- Air inside the tube
- System was not completely sealed off
- Bacteria were not present in the soil


Samples after 4 Weeks

Sample Source

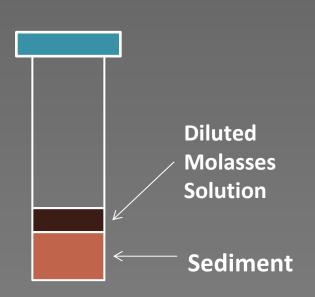
Core samples from FSB 91C

New Experimental Approach

Anaerobic Chamber \rightarrow Prevents O₂ from entering the system

Experimental Approach Con't

 To enhance bacterial growth, a basal medium was added to the solution


The basal medium
(per liter)
1.5 g NaHCO ₃
0.2 g NH ₄ Cl
0.1 g K ₂ HPO ₄ ·3H ₂ O
0.055 g KH ₂ PO ₄
0.001 g resazurin as a redox
indicator
0.039 g/L Na ₂ S·9H ₂ O as a
sulfur source and reductant
0.1 g MgCl ₂ ·6H ₂ O

Trace metal solutions
recipe (per liter)
0.005 g FeCl ₂ ·4H ₂ O
0.005 g MnCl ₂ ·4H ₂ O
0.001 g CoCl ₂ ·6H ₂ O
0.0006 g H ₃ BO ₃
0.0001 g ZnCl ₂
0.0001 g NiCl ₂ ·6H ₂ O
0.0001 g
Na ₂ MoO ₄ ·2H ₂ O
0.002 g CaCl ₂ ·2H ₂ O

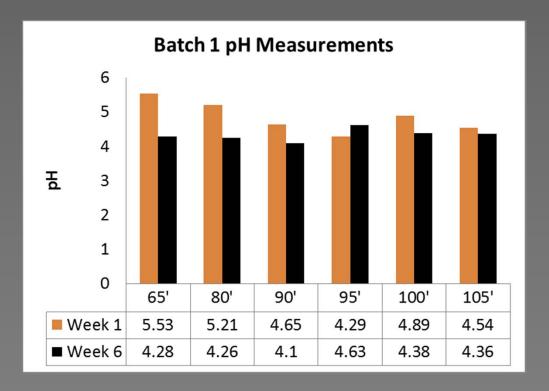
Experimental Approach Con't

- Composition of the sample:
 - Sediment to fill 10-mL volume
 - 10 mL of diluted molasses solution

Samples placed in the anaerobic chamber

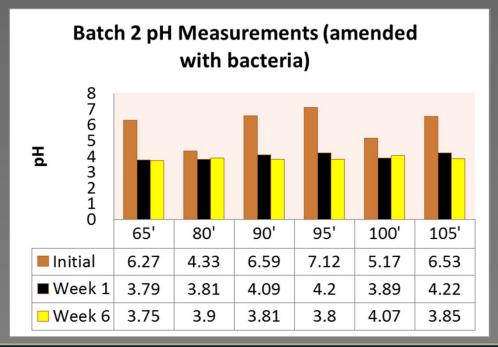
Re Oxidation Period

- After six weeks samples will be sacrificed
- Three types of environments:
 - Anaerobic chamber with no oxygen
 - Small chamber containing 2000 ppm oxygen
 - Work bench at atmospheric oxygen levels

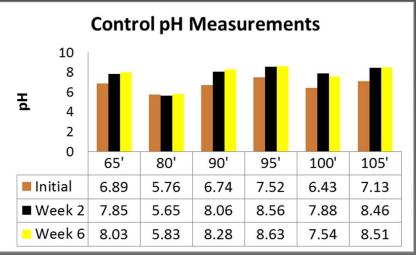

Analytical Methods

- Solid Phase → XRD
 - Samples are dried in their respective oxygenated environments (3 weeks)
 - Transported in sealed containers
- Liquid Phase →ICP
 - Liquid is centrifuged
 - Supernatant is filtered (0.45 μm)

pH Results


- Batch 1
 - 1 set with duplicates (12 samples)
 - Descending trend in pH for all samples but one (95')

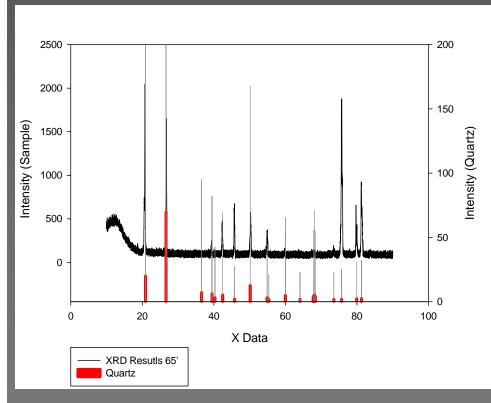
Task 2.2 – pH Results

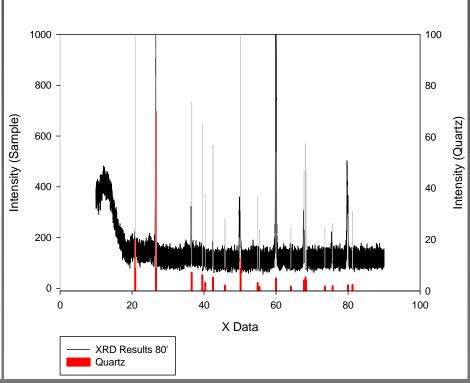

- Batch 2: 1 set with duplicates (12 samples)
- Modifications:
 - Amended with 100 μL bacteria (from anaerobic digester)
 - Each sample was supplemented with additional 0.5 mL of molasses a week after initial addition

pH Results for Control Samples

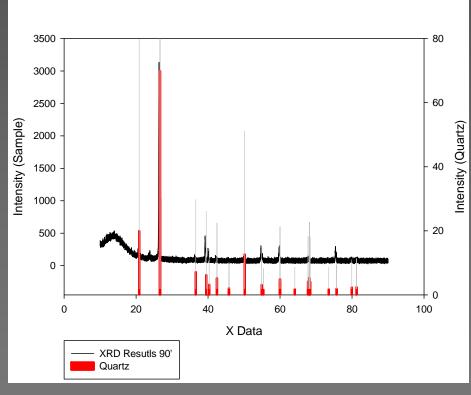
- Composition of the sample:
 - Sediment to fill 10-mL volume
 - 10 mL of diluted basal medium (no molasses)
- pH of basal Medium = 8.55
- Opposite to Batch sample results
 - Ascending instead of Descending trend in pH
- Contradicts hypothesis that the pH of the samples was dropping due to the reaction of the solution with the acidic soil
- Supports that pH is increasing due to the production of organic acids via the molasses fermentation process

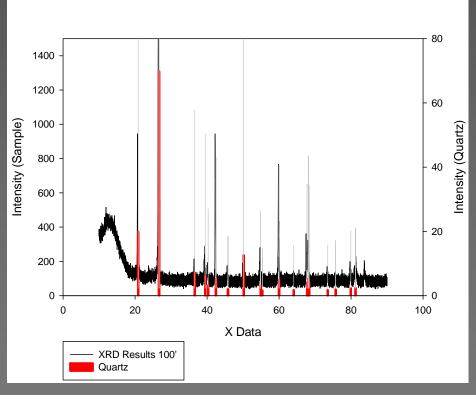
Fungi Growth





Example of fungi growth on some of the samples.


XRD Analysis (Original Samples)



XRD Analysis (Original Samples)

- Most likely match for the results is quartz; 80% of the peaks match and line up at most depths.
- The intensity ratios are sometimes off, could be because those peaks belong to some other mineral also present in the sample but in smaller quantities.

Future Work

- Perform XRD analysis for remaining samples
- Continue with identifications of minerals and analysis of XRD Results
- Receive mineral trap diffusion samples and start analyzing them via SEM/ED and XRD