

Summer 2019 Internship WRPS Test Bed Initiative (TBI)

Jason Soto (DOE Fellow)

DOE-FIU Science and Technology Workforce Development Program Applied Research Center Florida International University

FLORIDA INTERNATIONAL UNIVERSITY

Background

- Goal of Hanford Cleanup
 - Prevent the release of nuclear waste into the environment
 - Convert the Hanford Site into a nature reserve and national park.
- Role of WRPS
 - Safely and efficiently manage the waste stored in the underground tanks

Project Description

- Problem
 - Tank waste contains substantial amounts of Cesium
 - Inefficient to vitrify
 - Affects glass properties
 - Problematic to grout
- Cesium 137
 - Radioactive isotope
 - Half life of 30 years
 - Chemically active
 - Gamma rays

Scope/Objective

- Develop a tool to extract cesium from tanks
 - More waste can be vitrified at a time
 - Speeds up cleanup process
 - Lowers overall costs

- My role
 - Design Engineering Intern
 - SolidWorks Design

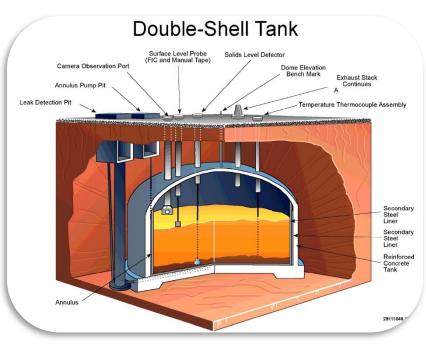


Figure 1. Diagram of a Double Shelled Tank

Method / Approach

Waste Process

- Waste pumped through the Ion Exchange Column (IXC).
- Cesium reduced waste is destined for vitrification or grouting.
- Cesium saturated filter encapsulated in storage cask.

Project Stages

- Stage1 Completed
 - Experimental test
 - 3 gallons of waste treated
- Stage2 In Design Phase
 - Scaling test
 - 2000 gallons of waste treated
- Stage3 Future
 - Full scale operation

Figure 2. Hanford Vitrification Canisters

Method / Approach

Design Requirements

- Shielding
 - Cesium decay produces gamma rays.
 - Based on expected concentration of Cesium, 8" of steel plate or 10" of steel shot required to protect workers.
- Shine Paths
 - Overlapping components prevent radiation from shining through cracks.
- Manufacturing
 - All the parts must have a manufacturing method in mind.
- Venting
 - Radioactive materials produce hydrogen, which must be vented.

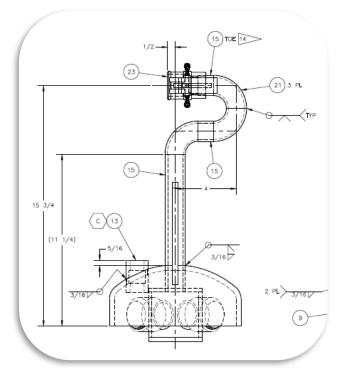


Figure 3. Engineering drawing of IXC endcap FLORIDA INTERNATIONAL UNIVERSITY

Preliminary Results/Discussion

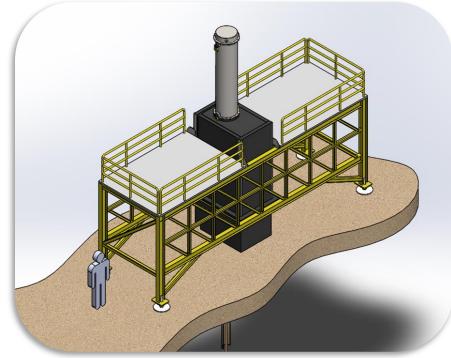


Figure 4. Conceptual Design of IXC Extraction Tool

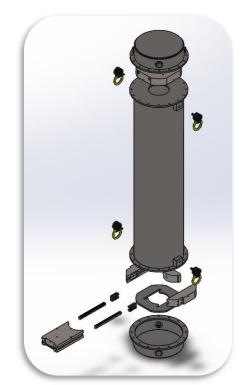
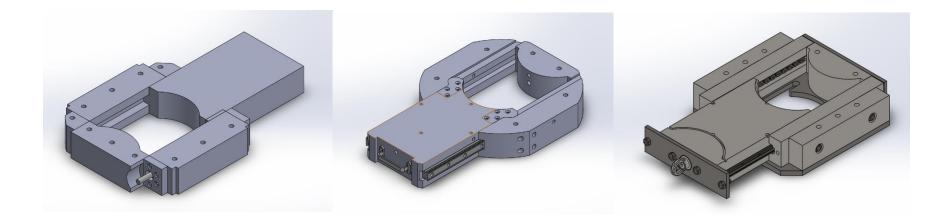



Figure 5. Detail Design of IXC Storage Cask FLORIDA INTERNATIONAL UNIVERSITY

Preliminary Results/Discussion

Figure 6. Detail Design Showing Cask Door Iterations

Advancing the research and academic mission of Florida International University.

Conclusions

- Cask design has advanced considerably
- Other engineers are working on the various components
- Design work is more challenging when split up
- Stage 2 will be taken to 90% completion

Future Work

- Stage 2 Design
 - Finalize design
 - Tolerances/Clearances
 - Structural analysis
 - Approval
- Stage 2 Testing
 - Dry runs
 - Problem scenarios
- Stage 3 Designs
 - More Integral Approach
 - Cask swapping system

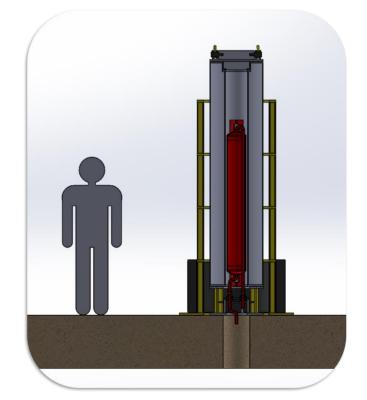


Figure 7. Early Concept of Stage 3 Design

Acknowledgements

- Mentors
 - Matthew Garlick
 - Fred Sijgers
 - Dr. Leonel Lagos
- DOE-FIU Science and Technology Workforce Development Program
- Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM0000598.