

FIU Project 3 – Waste and D&D Engineering and Technology Development

Presented: August 7, 2019

Dr. Himanshu Upadhyay

FLORIDA INTERNATIONAL UNIVERSITY

Project Tasks and Scope

Task 1 Waste Information Management System (WIMS)

- Manage complex-wide waste forecast information for planned treatment/disposal
- Provide web-based system to receive, organize, and report DOE waste forecast streams via a common application

Task 3 Knowledge Management Information Tool (KM-IT)

• Maintain and preserve D&D knowledge by enhancing communication, information sharing, and distribution to assist future D&D projects and workforce

Task 6 Analysis of Image Data using Machine Learning/Deep Learning and Big Data Technologies

 Develop a pilot-scale infrastructure using machine learning/deep learning and big data technologies for structural health monitoring of facilities using investigate a imaging technologies deployed at FIU mock up facilities

Knowledge Base for Environmental Management

Advancing the research and academic mission of Florida International University.

Knowledge Base for Environmental Management

About KBEM

The KBEM provides a common interface for all IT applications for DOE EM developed and maintained by the Applied Research Center at Florida International University. The Knowledge Base for Environmental Management (KBEM) provides a unified system of knowledge management (community of knowledge) for the Department of Energy Office of Environmental Management (DOE EM) and includes the following major areas: Deactivation and Decommissioning (D&D), Soil and Groundwater (S&GW), Waste Processing, and International Knowledge

https://kbem.org/

Advancing the research and academic mission of Florida International University.

Knowledge Management Information Tool (KM-IT)

www.dndkm.org

FLORIDA INTERNATIONAL UNIVERSITY

- D&D Hotline
- Technology Module
- Vendor Module
- D&D Research
- Mobile applications
- Lessons Learned
- Documents
- Pictures/videos
- Search tools
- Training
- Specialists
- Best Practices

www.dndkm.org

KM-IT Modules

Task 3 – Knowledge Management Information Tool (KM-IT)

Accomplishments Year 9:

- KM-IT development and enhancement.
- FIU completed enhancing and optimizing the web crawler to search and retrieve information related to D&D from within KM-IT as well as from OSTI and identified internet sources/websites.
 - Search KM-IT
 - OSTI Search
 - Search Web

Applied Research

Center

Task 3 – Knowledge Management Information Tool (KM-IT)

Accomplishments Year 9:

- Researchers and DOE Fellows continued to research the latest penetration testing, malware analysis and forensics tools to secure KM-IT system and infrastructure
 - Regularly performed penetration testing on network, KM-IT database and application servers.
 - Trained DOE Fellows in DOE-EM Cybersecurity lab on advanced security tools commonly used in the industry.

D&D KM-IT Statistics as of July 2019

- D&D KM-IT web analytics to track usage metrics.
- 985 D&D technologies
- 1045 registered users
- 980 D&D vendors
- 195 Hotline questions/solutions
- 103 subject matter specialists

Mar-12 Jul-19

Growth from March 2012 to July 2019

Fully searchable resources – Original sources no longer available

- 169 ALARA Center reports archived (Hanford and SRS)
- 231 Innovative Technology Summary Reports archived

D&D KM-IT Statistics as of July 2019

FIU Applied Research Center

93.6%

- Year comparison activity on D&D KM-IT (2019 vs 2018)
- Double digit percentage increase on: Users, New users, Sessions and Pageviews
- Minor increase on: Pages per session and Avg. session duration

 Unchanged bounce rate

Task 3 – Knowledge Management Information Tool (KM-IT)

Accomplishments Year 9:

 FIU presented D&D KM-IT research at WM2019, demonstrated at FIU booth and student alumni pavilion

Abstract: 19107

Title: Robotics on KM-IT Platform **Authors**: Himanshu Upadhyay, Walter Quintero, Leonel Lagos, Peggy Shoffner

Session: D&D General - Posters

BSITY - ARC

Task 3 – Knowledge Management Information Tool (D&D KM-IT)

Proposed Scope for Year 10

- KM-IT Development and Enhancement
 - Enhance D&D Research module for multiple DOE EM sites, universities and national labs
- KM-IT Outreach Community Support
 - Participation in industry conferences and workshops
 - Newsletters and mass communications
 - User support, including requested ad hoc specialized reporting
- KM-IT Maintenance & Administration
 - Cybersecurity & Administration of KM-IT Infrastructure
 - Content Management (Published technologies/vendors, news, lessons learned/best practices on the KM-IT platform)
 - Web Analytics (Quarterly update of Google analytics, server log analysis, and metrics reporting)
 - KM-IT Application and Database hardware upgrade

Waste Information Management System (WIMS)

https://www.emwims.org

FLORIDA INTERNATIONAL UNIVERSITY

Task 1 – Waste Information Management System

Accomplishments Year 9:

- Easy-to-use tool to visualize and understand the forecasted DOE-EM waste streams & transportation information.
- WIMS is deployed and available at <u>https://www.emwims.org</u>
- Various modules of WIMS are Forecast Data, Disposition Map, Successor Stream Map, GIS Map, Transportation, Reports and Help.

Task 1 – Waste Information Management System

Accomplishments Year 9:

- Upgraded WIMS application framework & published updated system on March 30, 2019.
- FIU successfully upgraded the WIMS application to the latest Microsoft.Net framework 4.6.1 from framework 1.1 (Win 2003)
 - Deployed Database and Application servers with updated framework.
 - Configured WIMS application to execute on upgraded framework.
 - Upgraded WIMS components, controls and modules to the new framework.

Task 1 – Waste Information Management System

Accomplishments Year 9:

 FIU presented WIMS research in 2019 Waste Management Symposia.

Title: Waste Information Management System with 2018-19 Waste Streams **Authors:** Himanshu Upadhyay, Walter Quintero, Leonel Lagos, Peggy Shoffner **Abstract and Session**: 19106, Poster Session 2 – Characterization

Walter Quintero presenting WIMS poster at WM2019

Task 1 – Waste Information Management System

Proposed Scope for Year 10

- Integrate 2020 waste stream and transportation data into WIMS.
 - Update WIMS modules Forecast Data , Waste Stream and GIS map
 - Update and Publish reports
 - Update and Publish Transportation Module
 - Publish updated application on secured socket layer
- WIMS Identity Management
 - Design and develop Registration Database
 - Develop Authentication Module
 - Authorization Module Development
- Upgrade WIMS Report Server & Report Function
 - Deploy and integrate report server
 - Design, develop and publish reports
 - Integrate report in WIMS application

Analysis of Image Data using Machine Learning/Deep Learning and Big Data Technologies

FLORIDA INTERNATIONAL UNIVERSITY

Task 6 – Analysis of Image Data using Machine Learning/Deep Learning and Big Data Technologies

Site Needs:

Assess the structural integrity of aging facilities in support of ongoing surveillance and maintenance (S&M) across the DOE complex.

Objectives:

Under this subtask for FIU Performance Year 9, FIU will develop a pilotscale infrastructure to implement structural health monitoring using scanning technologies, machine learning / deep learning and big data technologies. This pilot system is intended to serve as a starting point to engage the DOE field sites on related data sets and their decision making needs.

Task 6 – Analysis of Image Data using Machine Learning/Deep Learning and Big Data Technologies

Accomplishments Year 9:

- Set up mock-wall in outdoor test facility that simulates structural conditions of D&D facility.
- Collected over 28,000 images from different wall sections.
- Data variation contains different light exposure, wall angles and scale ratios.
- Image data sets are stored in the Big Data Platform.
- Data subsets are replicated in local storage networks for increased I/O transfers.

Task 6 – Analysis of Image Data using Machine Learning/Deep Learning and Big Data Technologies

Accomplishments Year 9:

Baseline Model Development and Categorization

The baseline was created from images collected from the outdoor D&D mockup facility.

- A total of 28,000 images were collected.
 - 14,000 images were classified as "baseline" (all sections containing "CL" tag).
 - 14,000 images were classified as "deteriorated".

Task 6 – Analysis of Image Data using Machine Learning/Deep Learning and Big Data Technologies

Accomplishments Year 9:

Deep Convolutional Neural Network Architecture:

Task 6 – Analysis of Image Data using Machine Learning/Deep Learning and Big Data Technologies

Accomplishments Year 9: Results

Model Accuracy

Confusion Matrix

Advancing the research and academic mission of Florida International University.

Task 6 – Analysis of Image Data using Machine Learning/Deep Learning and Big Data Technologies

Accomplishments Year 9: Classification of Wall Images

Sample Baseline Images

Input image feed to CNN model for Classification

Model Prediction = "Baseline" 94.35% probability

Model Prediction = "Baseline" 87.63% probability

Model Prediction = "Degraded" 97.13% probability

Model Prediction = "Degraded" 97.16% probability

Advancing the research and academic mission of Florida International University.

Task 6 – Analysis of Image Data using Machine Learning/Deep Learning and Big Data Technologies

Accomplishments Year 9:

Presented this research at WM2019.

The poster focused on the methodology and approach of this research. Conference attendees had a lot of interest in this research focused on Artificial Intelligence and Big Data technologies.

Abstract: 19108

Title: Big Data Framework with Machine Learning for D&D Applications **Authors**: Himanshu Upadhyay, Leonel Lagos, Anthony Abrahao, Walter Quintero, Santosh Joshi

Walter Quintero and Alejandro Koszarycz at WM2019 presenting poster.

Task 6 – Analysis of Image Data using Machine Learning/Deep Learning and Big Data Technologies

Accomplishments Year 9:

WM Symposia awarded the rating of a "Superior Paper" for the "Big Data Framework with Machine Learning for D&D Applications" paper.

Advancing the research and academic mission of Florida International University.

Task 6 – Analysis of Image Data using Machine Learning/Deep Learning and Big Data Technologies

Proposed Scope for Year 10

- FIU will use the LiDAR technology to collect point cloud data by scanning the D&D mock up facility at FIU.
- The point cloud data collected from LiDAR will be stored on a Hadoop distributed file system for storage and processed with distributed nodes using parallel processing.
- FIU will continue to work on the development and optimization of the convolutional neural network algorithm to classify structural wall images using the point cloud data and images.
- FIU will research, design and develop the object recognition algorithm using computer vision to identify cracks and structural defects in the mock up wall.

Task 6 – Analysis of Image Data using Machine Learning/Deep Learning and Big Data Technologies

Proposed Scope for Year 10

- FIU plans to deploy an integrated big data and machine learning server infrastructure using Docker containers and a Kubernetes orchestration framework for image data storage and processing.
- Algorithms and big data technologies developed under this research will help in surveillance and maintenance of D&D buildings to identify cracks, defects and other irregularities using LiDAR or other scanning/imaging technologies.
- Identifying anomalous sensor data collected from various monitoring applications across DOE-EM sites.
- This research task will also support the Ph.D. studies of the DOE Fellow

 Roger Boza working on image recognition, neural network design and
 optimization for image processing and object recognition.