

High Density Polyurethane Foam for Radiation Shielding & D&D Applications

Alexander M. Piedra

DOE-FIU Science and Technology Workforce Development Program Applied Research Center Florida International University

FLORIDA INTERNATIONAL UNIVERSITY

Project Description/Background

Savannah River Site has many radioactive facilities that are in the process of being deactivated and decommissioned. Improvements in D&D tools can greatly time and but most money, save importantly, increase worker safety. Fixatives are a common tool used in D&D applications.

SRS Building 235-F

235-F Hot Cells

Advancing the research and academic mission of Florida International University.

Scope/Objective

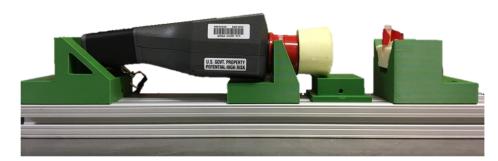
Objective: Assess how well polyurethane foams can be used for D&D activities.

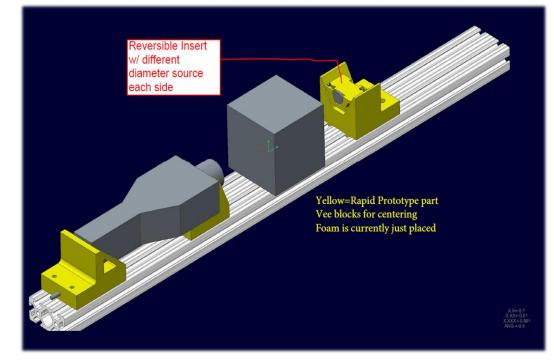
Benefits:

- Allows for fixation of contamination on a given surface
- Capable of filling regular and irregular voids (gloveboxes, etc.)
- Enables partial shielding
 - Reduces worker dose
 - Allows longer worker dwell time
- Potentially provides a level of flame protection

Method / Approach

Foam Synthesis and Rad Hardening


- Analyze foam expansion and curing properties
- Different materials are added to foam solutions for rad hardening
- Foam samples tested with various sources for shielding at a specified distance



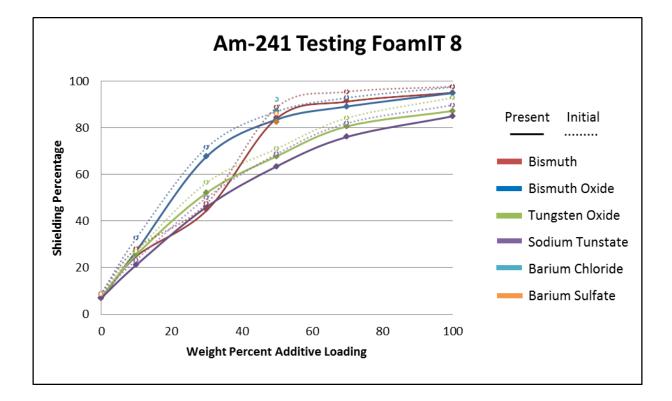
Method/Approach

Experiment Revision

- Foam Block
 - Fixed foam volume, thickness
 - Easily calculate density
- Track and Supports
 - Fixed orientation
 - Easily adjustable
 - Consistent values for distances
 - Alignment of components
 - Results are more replicable

Method/Approach

Long Term Assessment of Rad Shielding


- Stability of foam performance over time
- Rad shielding capability over time
- Two trials completed approximately 10 months apart
 - Same samples
 - Same sources

FLORIDA INTERNATIONAL UNIVERSITY

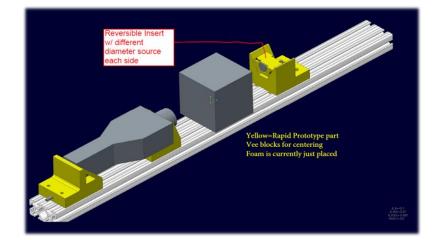
Preliminary Results/Discussion

Advancing the research and academic mission of Florida International University.

FLORIDA INTERNATIONAL UNIVERSITY

Preliminary Results/Discussion

Results closely resemble the initial trial for both foams


Advancing the research and academic mission of Florida International University.

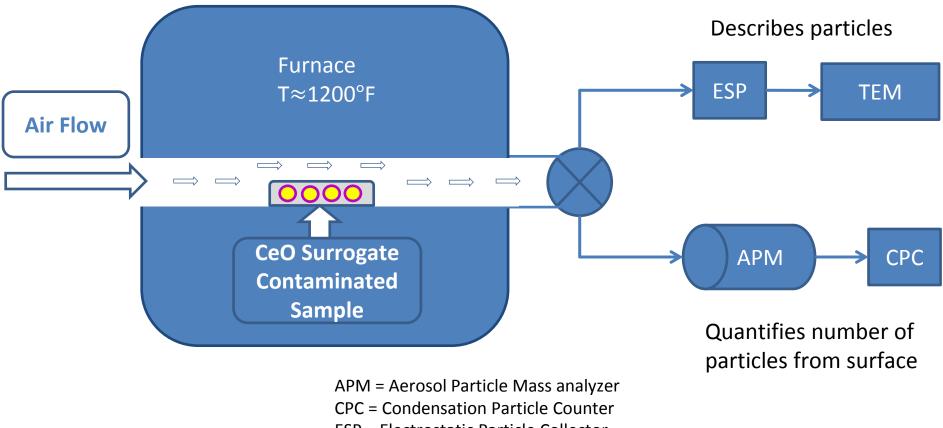
Conclusions

- The foams have no immediate change in shielding capacity
- Difference in data may be due to:
 - Sensor calibration
 - Small differences in component placement
 - Change in background radiation (source room)
- For successive testing, foam samples should be more uniform in shape and size

Future Work - SRNL

Adhesion & Off-Gassing Testing

- Ability to fixate particulates (fixating capacity)
- Off-gassing analysis
 - Composition/degradation products when subjected to heat


FLORIDA INTERNATIONAL UNIVERSITY

Future Work - SRNL

Particle Collector Design

- ESP = Electrostatic Particle Collector
- **TEM=** Transmission Electron Microscope

Future Work – SRNL/FIU

Structural Integrity Testing

- Items of interest
 - Structural support provided to foam filled glove box
 - Mechanical characterization
 - » Tensile
 - » Compression
 - » Impact

- **Thermal Sustainability & Mass Loss Assessment**
 - Heat exposure limits
 - Flame response

Acknowledgements

• Summer Mentors

- Connor Nicholson
- Brent Peters
- Aaron L. Washington, II
- FIU ARC Mentors
 - Joseph Sinicrope
- DOE-FIU Science and Technology Workforce Development Program
- Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM0000598.