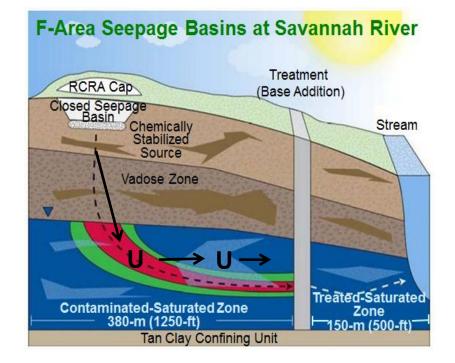


Unrefined humic substances as a potential low-cost remediation method for acidic groundwater contaminated with uranium

Hansell Gonzalez-Raymat

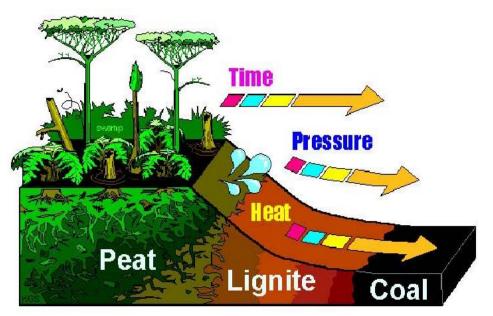
DOE-FIU Science and Technology Workforce Development Program Applied Research Center Florida International University

FLORIDA INTERNATIONAL UNIVERSITY



Project Description/Background

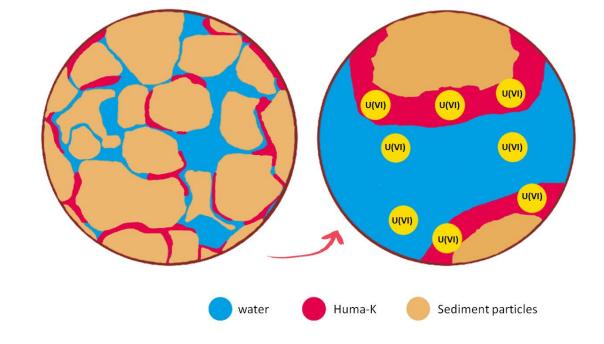
- Approximately 1.8 billion gallons of acidic waste solution containing radionuclides and dissolved metals were discharged to a series of unlined seepage basins at the F/H Area.
- The constituents of concern (COCs) associated with the F-Area groundwater plume are ²³⁸U, ¹²⁹I, ⁹⁰Sr, and ⁹⁹Tc.
- Radionuclides such as are migrating into the groundwater creating an acidic plume pH between 3-5.5.


Uranium migration

Project Description/Background

- Humic substances are ubiquitous in the environment, occurring in all soils, waters, and sediments of the ecosphere.
- Humic substances arise from the decomposition of plant and animal tissues.
- Fulvic acid soluble at all pH values.
- Humic acid insoluble at pH < 2.
- Humin insoluble at all pH values.

Formation of Humic Substances



Project Description/Background

- Huma-K is an organic fertilizer that comes from the alkaline extraction of leonardite (a low-rank coal).
- Huma-K has a high content of humic substances.

Scope/Objective

- The principal objective of my project is to determine if the low cost unrefined humate solution known as Huma-K can be used to facilitate uranium adsorption to control the mobility of uranium in acidic groundwater.
- This objective will be fulfilled by completing the following specific aims:
 - Characteristics of Savannah River Site sediments and Huma-K.
 - Sorption behavior of Huma-K on Savannah River Site sediments.
 - Removal of uranium using SRS sediments amended with Huma-K.

FLORIDA INTERNATIONAL UNIVERSITY

Method / Approach

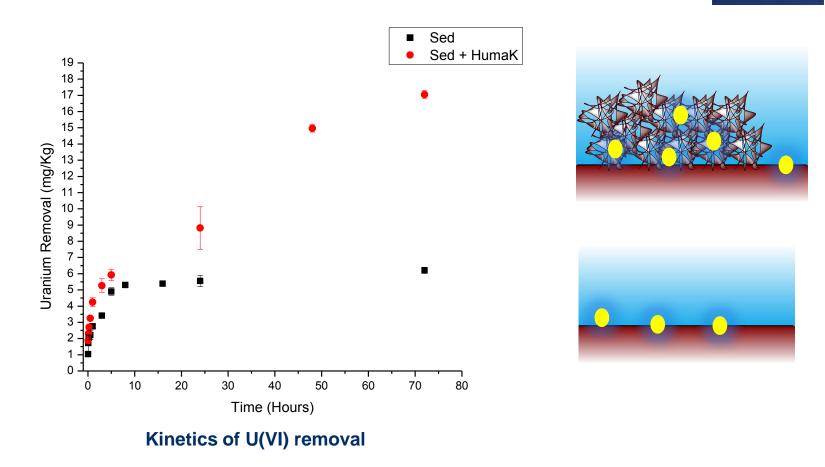
Centrifuge tube with amended sediment and uranium

Kinetic Phosphorescence Analyzer

Samples in shaker table

FIU Applied Research Center

Centrifuge


Advancing the research and academic mission of Florida International University.

FLORIDA INTERNATIONAL UNIVERSITY

Preliminary Results/Discussion

FIU Applied Research Center

Future Work

- The effect of pH and initial uranium concentrations will be evaluated, as well as an extension of the U(VI) desorption study via the following experimental matrix:
 - Savannah River Site sediments + Uranium
 - Savannah River Site sediments + Uranium + Huma-K
 - Sediments coated with Huma-K + Uranium
 - Huma-K + Uranium

Acknowledgements

- FIU ARC Mentors
 - Yelena Katsenovich
- DOE-FIU Science and Technology Workforce Development Program
- Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM0000598.