

Surface/Ground Water Interface and Radioactive Contaminant Ecological Risk Assessment Using EPA Method in the (F-Area)-Savannah River Site (SRS) Aiken, SC.

Mohammed Albassam (DOE Fellow) Juan Carlos Morales (DOE Fellow)

DOE-FIU Science and Technology Workforce Development Program Applied Research Center Florida International University

FLORIDA INTERNATIONAL UNIVERSITY

FLORIDA INTERNATIONAL UNIVERSITY

Summer 2017 Internship at DOE-EM HQ

Juan Carlos Morales Ph.D. Environmental Health Sciences

Mohammed Albassam Master's Water Resources Engineering

Advancing the research and academic mission of Florida International University.

FLORIDA INTERNATIONAL UNIVERSITY

Summer 2017 Internship at DOE-EM HQ

Summer mentors: Skip Chamberlain, Jr and Kurt Gerdes DOE-HQ Office of Environmental Management

Advancing the research and academic mission of Florida International University.

Background

- Savannah River Site (SRS) Aiken, SC.
- F-Area Located in the central point of the SRS.
- Covers approximate area of 6.5 acres with elevation of 55-90 m.
- From 1955-1988, the F-area discharged radioactive and hazardous metals into seven seepage basins.
- Contamination of the underline grounds and upper aquifers.
- Creation of underground plume that crops out a seeplines along a stream approximately 400-600 m from the basins.

Scope/Objective

- 1. Understanding the concept of surface water/ground water interface phenomenon in the Savannah River Site (F-Area).
- 2. Develop a conceptual Ecological Risk Assessment for the Savannah River Site (F-Area).

Method / Approach

Surface water/ground water interface:

- Most surface water bodies such as lakes, rivers, and wetlands systems are connected to ground water.
- Transition zone is an ecological community with important ecosystem functions affecting several trophic levels from microbes to fish.
- The interchange of this phenomena in a hydrological system may develop a possible contamination of surface water especially if the ground water system contains a plume of contaminants.

Method / Approach

- The F-area is located above the Atlantic Coastal Plain aquifer.
- The main recharge source for the Atlantic Coastal Plain aquifer is precipitation.
- Based in the location of the Farea, the surface-water/groundwater interface is most likely to occur since the plume is still active and the area is located near to two main surface water bodies which are the Upper-Three Runs and the Fourmile-Brach streams.

Method / Approach

Ecological Risk Assessment:

- 1. Definition and History
- 2. How can ERA help SRS- FASB
- 3. Methodology
- 4. Problem
- 5. Receptor
- 6. Toxicity Assessment
- 7. Risk Characterization

Why use an ERA

FLORIDA INTERNATIONAL UNIVERSITY

Methodology

Receptor Identification

Site-specific Ecological Risk Assessment

- Groundwater is contaminated with I-129, U-234/238, and Tc-99 because of past operations in the (F-area)
- Migration of contaminants was characterized by a number of environmental investigations
 - Soil acidic
 - Surface/groundwater interface

Receptor of Concern

- Criteria for selecting surrogate receptors included:
 - Known to occur or is likely to occur at the site
 - Is representative of an important taxonomic group/ trophic level
 - Ecological information in readily available
 - Considered to be radiosensitive

- Species-specific exposures factors were used to model radiation exposures
 - Obtained from literature sources
 - Derived using allometric equations
 - Data was extrapolated closely to the related species
 - (lepomis auritus) RedBelly Sunfish

Dose Rate Modeling

- Both external and internal radiation were considered
- Internal dose was calculated with tissue concentration
 - Ingestion of different food sources (plants/ insects)
- Calculate the Maximum tissue concentration within the lifetime
 - 1. Radiological decay and biological decay
- Screening Analysis
 - Bioaccumulation factors
 - The dose rate for gross gamma (γ) and gross beta (β) isotopes.
- $BAF = \frac{C_{fish}}{C_{medium}}$
- $D_{\gamma} = 5.76 \ x \ 10^{-4} E_{\gamma} n_{\gamma} (1 \Phi) C_S R$ $\mu Gy \ h^{-1}$ (external dose)
- $D_{\beta} = 5.76 \ x \ 10^{-4} E_{\beta} n_{\beta} C_0 \quad \mu Gy \ h^{-1}$ (internal dose)

Risk Characterization

- HQ= Dose total / dose limit
- 0.04 $\mu Gy h^{-1}$ = 1rad per day (USDOE)
- $HI = HQ_{U-234} + HQ_{U-238} + HQ_{I-129} + HQ_{Tc_{99}}$

HI < 1, no unacceptable risks HI > 1, potential for unacceptable risks

Expected Results

- Potential radiation exposures in current conditions in Fourmile branch will be below levels that could result in potentially unacceptable risks.
- Further evaluation is needed to warrant the remediation to monitor the aquatic organisms.
- Plume remediation can expect to decrease ecological exposures and potential risks to even lower levels than those identified in this risk assessment.

Acknowledgements

Summer Mentors

- Kurt Gerdes, OD (Program Director DOE-EM)
- Skip Chamberlain, Jr (Program Manager, DOE-EM)
- Dr. Miles Edwin Denham (Research Scientist SRNL)
- Dr. Carol Eddy-Dilek (Env. Scientist SRNL)
- Dr. James Poppiti (Chm. Engineer DOE-EM)

FIU ARC Mentors

- Dr. Leonel Lagos (Program Director ARC)
- Dr. Mehrnoosh Mahmoudi (ARC)
- Angelique Lawrence (ARC)
- DOE-FIU Science and Technology Workforce Development Program
- Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM0000598.

FIU Applied Research Center