

Anomaly Detection and Task Planning via Neural Networks and Hierarchical Task Networks

Sebastian A. Zanlongo (DOE Fellow)

DOE-FIU Science and Technology Workforce Development Program Applied Research Center Florida International University

FLORIDA INTERNATIONAL UNIVERSITY

Summer 2017 Internship at SNL

Sebastian A. Zanlongo PhD Candidate Computer Science

Summer mentor: Scott Gladwell Sandia National Laboratories

Advancing the research and academic mission of Florida International University.

Project Description/Background

Challenge: How to extract valuable insights from the vast quantities of diverse data that are generated across the DOE complex?

- Current systems record large amounts of information for environmental monitoring, tank and pipe inspections, etc:
 - Video
 - Sensor data (temperature, radiation, etc.)
 - Records/documents

- Currently rely on human operators for analysis and decision-making
 - Too much information to parse
 - Limited reaction time
 - Not easily scalable

Scope/Objective

- Develop a system for automatically detecting and handling anomalies in multimodal, spatial and temporal data
 - Determine a sequence of actions to search for anomalies
 - Able to interpret sensor data and extract meaning

Method / Approach

- Inspection Tool/Process Selection
 - Hierarchical Task Network (HTN) to make decisions
 - Goal-oriented
 - Adaptive (incorporates current world-state)
 - Extensible (new actions are easily incorporated)
- Detection
 - Shared representations for multimodal data
 - Long Short Term Memory (LSTM) Neural Networks to detect anomalies

Automated Task Planning

PRELIMINARY RESULTS/DISCUSSION

FLORIDA INTERNATIONAL UNIVERSITY

Automated Inspection Planning

Advancing the research and academic mission of Florida International University.

Automated Inspection Planning

World State

- status: unknown
- tools = mini-rover, polemounted camera, ultrasound
- environment: large
- radiation: low
- target: true

Response

- status: inspected
- tool = ultrasound
- strategy = ultrasound

Automated Inspection Planning

World State

- status: unknown
- tools = mini-rover, polemounted camera, ultrasound
- environment: large
- radiation: low
- target: false

Response

- status: inspected
- tool = pole-mounted camera
- strategy = visual

Automated Inspection Planning

World State

- status: unknown
- tools = mini-rover, polemounted camera, ultrasound
- environment: small
- radiation: low
- target: false

Response

- status: inspected
- tool = mini-rover
- strategy = visual

Image Captioning

PRELIMINARY RESULTS/DISCUSSION

FLORIDA INTERNATIONAL UNIVERSITY

Machine Learning using LSTM

- Learning a prediction model using LSTMs and ConvNets
- Input : time series multimodal, spatially correlated data
- Output : predicted error vectors

Anomaly Detection

PRELIMINARY RESULTS/DISCUSSION

Anomaly Detection

Example :

- Train on sine wave
- Expect a repeating sinelike wave
- Inject an anomaly
- Error when measured value does not match predicted value

Preliminary Results/Discussion

- Elements in place for a comprehensive inspection system
 - Select inspection method and tool
 - Interpret data
 - Determine if data is anomalous
 - Respond to environment

Conclusions

- Neural networks have been studied extensively for image captioning
- Some work has been done for anomaly detection
 - Little work on multimodal data fusion via shared representations
- Preliminary results indicate that the system presented is capable of addressing pressing inspection and monitoring concerns
 - Easily extensible towards other areas

Future Work

- Collect multimodal, spatio-temporal correlated training data
- Fuse sensor data into a shared representation
- Expand LSTM to work with multimodal data
- Modify LSTM to work with continuous data stream vs sliding window
 - Tune and train LSTM
- LSTM research is expected to continue after returning to FIU from Sandia

Acknowledgements

- Summer Mentors
 - Scott Gladwell
- FIU ARC Mentors
 - William Tan
- DOE-FIU Science and Technology Workforce
 Development Program
- Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM0000598.