

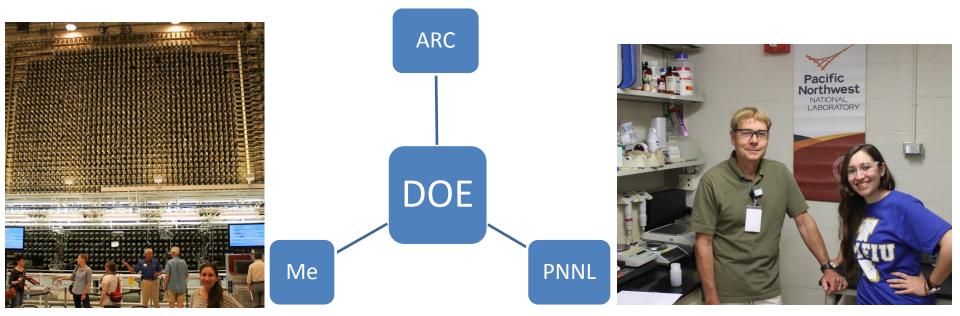
Ammonia gas Treatment for Uranium Immobilization at DOE Hanford Site

Silvina Di Pietro

DOE-FIU Science and Technology Workforce Development Program Applied Research Center

Florida International University

FLORIDA INTERNATIONAL UNIVERSITY



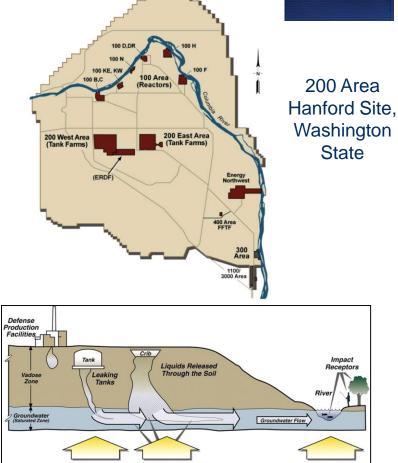
FLORIDA INTERNATIONAL UNIVERSITY

Collaboration FIU-ARC + PNNL = DOE-EM

Silvina Di Pietro Graduate Student Ph.D. Chemistry Environmental Track (photo at *B-reactor* Hanford Site) FIU mentors: Dr. Hilary P. Emerson Dr. Yelena Katsenovich PNNL mentors: Drs. Jim Szecsody Nik Qafoku

Advancing the research and academic mission of Florida International University.

Project Description/Background


Applied Research Center

Impact

Impact

Assessment

- During World War II and the Cold War, the key natural material for the Manhattan project was U
- Used as fuel for the reactors, >200,000 kg of U have been released
- Deep vadose zone (up to 255 ft)
- Contamination measured down to 170 ft
- Oxidizing conditions, $pH \sim 8$, play a big role

Waste discharges to the Hanford Site vadose zone (Gee et. al., 2007)

Release
Movement

Radioactive and Chemical Contaminants

Advancing the research and academic mission of Florida International University.

Remediation Process Summary

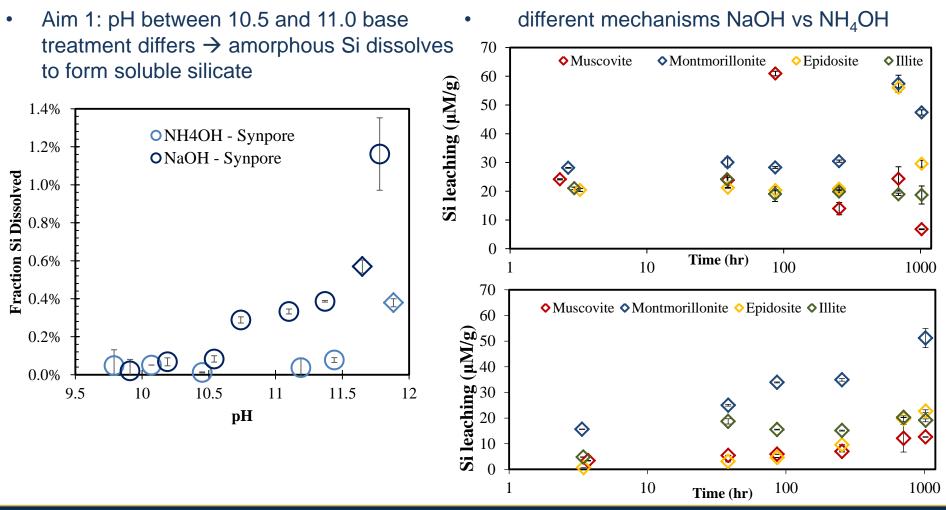
- Step 1: gas-liquid equilibrium as NH₃ partitions
- Step 2: alkaline pH allows for aluminosilicate mineral dissolution
- Step 3: precipitation occurs as pH returns to ~ 7 8

Two main processes: **adsorption** (complexation with mineral surfaces) and **co-precipitation** (formation of U-containing mineral phases)

Step 2 dissolve minerals	Step 3 precipitate and bind U
Ion exchange and mineral dissolution (including silicates)	pH decreases from buffering/loss of NH ₃ , stable precipitates bind/coat U so it is much less mobile
	dissolve minerals

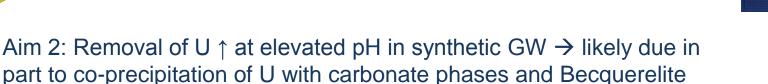
(Zhong et al., 2015)

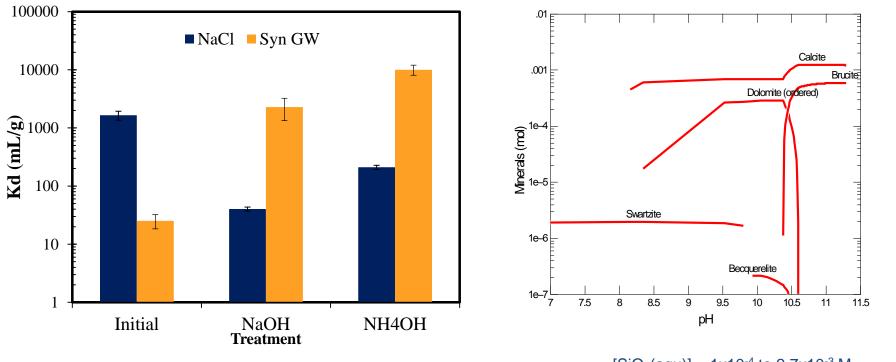
To understand the mechanisms leading to immobilization of uranium during remediation (upon injection of NH₃ gas)


Specific aims:

- 1. Quantify mineral dissolution kinetics
- 2. Investigate aqueous speciation and U partitioning
- 3. Characterize solid phases in terms of U speciation and mineralogy changes

Preliminary Results




Advancing the research and academic mission of Florida International University.

Preliminary Results Cont'd

۲ part to co-precipitation of U with carbonate phases and Becquerelite $[Ca(UO_2)_6O_4(OH)_6]$ precipitation

 $[SiO_2(aqu)] = 1x10^{-4} \text{ to } 2.7x10^{-3} \text{ M}$ Note: GWB calculations are for systems in equilibrium

Applied Research Center

Conclusions

- Aim 1:
 - NaOH and NH₄OH significantly increase mineral dissolution/precipitation
 - Both in FIU-ARC batch experiments and PNNL internship (different mechanisms: steady-state for NH₄OH, continued leaching for NaOH)
 - Incongruent dissolution (non-stoichiometric ratio) trend
 - Calcium: potential secondary minerals forming
- Aim 2:
 - Significant differences between NaCl and SGW due behavior of U-carbonate complexes
 - Observed point where U precipitation begins in SGW
- Aim 3:
 - Future work

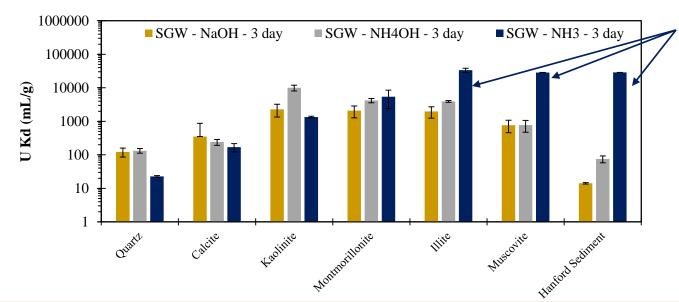
FLORIDA INTERNATIONAL UNIVERSITY

Accomplishments

Presentations

- "Effects of Ammonia and Variable Redox Conditions on Mineral Dissolution." *American Chemical Society*, April 1-6, 2017, San Francisco, CA
- "Ammonia gas Treatment for Uranium Immobilization at DOE Hanford Site." Waste Management Conference, March 5-9, 2017, Phoenix, AZ
- Posters
 - "Uranium Remediation via Base Treatment" at the Life Sciences South Florida @ eMerge Americas Technology Conference, June 12th, 2017, Miami Beach, FL
 - "Subsurface Uranium Remediation via Base Treatment." *March For Science Miami Expo*, April 22, 2017, Miami, FL
 - "Fate of U and Mineral Dissolution upon Treatment with NaOH or NH₄OH" Waste Management Conference, March 5-9, 2017, Phoenix, AZ
- Papers
 - Emerson, H. P., Di Pietro, S., Katsenovich, Y., and Szecsody, J. (2016). "Effects of Ammonia on Uranium Partitioning and Kaolinite Mineral Dissolution." *Journal of Environmental Radioactivity*, 167, 150-159 (peer-reviewed)
 - Emerson, H.P., <u>Di Pietro, S.</u>, Katsenovich, Y., and Lagos, L.E. (2016) "Effects of Ammonia on Uranium Partitioning and Kaolinite Mineral Dissolution." FIU-ARC-2016-800006471-04c-246 (Non peer-reviewed)
 - <u>Di Pietro, S.</u>, Emerson, H.P., Katsenovich, Y. (2017) "Ammonia Gas Treatment for Uranium Immobilization at US DOE Hanford Site" Waste Management Conference Proceedings (Non peer-reviewed)
- Internship 2016
 - Completed summer internship at PNNL, currently working on peer-reviewed paper for publication
- FIU Department of Chemistry en route to Ph.D. candidacy
 - Research Proposal
 - Cumulative Exams
 - Original Proposal
 - Classes (two remaining)

Future Work



To understand impacts of base treatment on:

- Physical and mineralogical changes due to dissolution and precipitation
- Speciation of U in the solid phase due to sorption and co-precipitation

To be accomplished via:

- Characterization of mineralogy via XRD and TEM, Surface area and morphology via BET and SEM, Analysis of U per EMPA, HRTEM, and SEM-EDS
- Predictive Geochemist WorkBench® Speciation modeling

Note: the focus will be on understanding *muscovite* and *illite* behavior with U as they are similar to Hanford sediment in the experiments for NH₃ gas treatment

Acknowledgements

FIU ARC Mentors

- Dr. Hilary P. Emerson
- Dr. Yelena Katsenovich
- DOE-FIU Science and Technology Workforce Development Program
- Sponsored by the U.S. Department of Energy, Office of Environmental Management, under Cooperative Agreement #DE-EM0000598