

Project 3 D&D

ARC Staff: Joseph Sinicrope, Mellissa Komninakis, Thomas Donoclift, Kexin Jiao, Leo Lagos

SRNL Collaborators: Connor Nicholson, Jennifer Wohlwend, Tristan Simoes-Ponce DOE Fellows: Tristan Simoes-Ponce, Joshua Nunez, Derek Gabaldon, Philip Moore

Florida International University

Project 3 D&D Portfolio: Guiding Tenets for Research Project Selection

- High profile mission sets / challenge areas (Pull)
 - SRS 235-F Risk Reduction Program (mission set)
 - DNFSB compliance
 - Open Air Demolition (challenge area)
 - Response to a release incident
- Employ a Holistic Solutions Approach
 - Depth vs breadth
 - Not just about the "box / technology"
 - MUST address the critical enablers (e.g.: standards) and institutional barriers (e.g.: approved tool list, handbook update, etc.)
- Technology deployment mindset
 - Focus on COTS technologies
 - 3-5 year timeline from concept to hot demo / deployment
 - ROI / value creation occurs when technology is adopted and operationally deployed
- Fill critical test and evaluation gaps

Research Activity #1: Incombustible Fixatives SRS 235-F PUFF Onsite Hot Demonstration

- Down-selected COTS-based intumescent technology successfully deployed in Process Cell #7 and the entry hood of Process Cell #1 at the SRS 235-F PUFF Facility
 - FIU / SRNL/ SRS collaborative effort
 - Concept to operational T&E in 3 years
 - Highlighted in DNFSB 2018 Annual Report
 - Targeting joint (FIU / SRNL / SRS) closeout report in 2021
 - Re-enter entry hood of Process Cell #1 to obtain thickness measurements
 - Baseline w/control coupons to determine impacts of Pu-238 on fixative material
 - Further characterize FD coating (impact, water immersion, water pressure testing, etc.)
 - Engage vendor to open new market for product

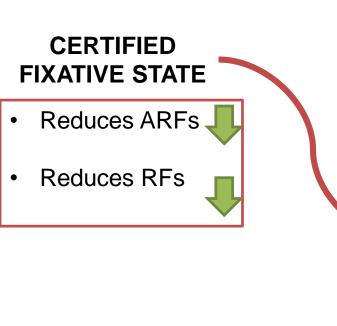
Two Strategic Takeaways from FD Hot Demo that Improve Technology Deployment Probability: Mitigate Risk (Develop Standards) and Increase Incentive (Update


Regulation) **Risk: International Standards** ncentive: Update Regulations Technology Chasm Deployment and Mainstream The Adoption

- Standard specifications and uniform testing protocols improve trust
 - Key contributors to reducing risk and ensuring compliance
- Updating regulations accounts for positive impacts of new technology developments
 - Source Term Formula in DOE-HDBK-3010
 - Positive impact of fixatives on reducing ARFs and RFs
 - Gives credit for using the technology (incentive-seekers)

Critical Role of Standards in Facilitating Technology Acceptance

- Choose between the two technologies based on the given information:
 - Technology 1: Fixative intended to stabilize residual radioactive material when exposed to fire.
 \$0.75 / square foot.
 - Technology 2: Fixative intended to stabilize residual radioactive material when exposed to fire. \$0.75 / square foot. Met ASTM E84, NFPA 701, and UL723 fire test standards.
- Choose between the two technologies based on the given information:
 - Technology 1: Fixative intended to stabilize residual radioactive material when exposed to fire.
 \$0.75 / square foot.
 - Technology 2: Fixative intended to stabilize residual radioactive material when exposed to fire.
 \$1.00 / square foot. Met ASTM E84, NFPA 701, and UL723 fire test standards.



Applied Research Center FLORIDA INTERNATIONAL UNIVERSITY

Empirically Confirm Fixative Technology Impacts on ARFs and RFs and Update DOE-HDBK-3010

Contaminant Form	Impact ARF / RF	Thermal ARF / RF		
Gas / Vapor	1.0 / 1.0	1.0 / 1.0		
Powder	3e-4 / 0.5	1e-2 / 1e-3 (reactive compounds)		
Liquid	4e-5 / 0.7	1e-3 / 1.0		
Metal / Solid	No significant airborne release is	Variable / 0.7 (Plutonium)		
	postulated for this accident configuration.	Variable / 1.0 (Uranium)		

Research Activity #2: Certifying Fixative Technologies

Define Operational Requirements

- Thermal
 - NRC 10 CFR 71.73
 - 800°C (1475°F) for 30 mins

OR

- ASTM E814
 - 1093°C (2000°F) for 4 hrs.
- Environmental / Water
 - NRC 10 CFR 71.73
 - Immersion under 3 ft. water
- Seismic / Impact
 - 320 in-lb maximum
- Rad Hardening
- Airborne release fractions / Respirable fractions

ASTM Standard Specifications

E3104 – Strippable & Removable Coatings

- E3105 Permanent Coatings
- E3191 Permanent Foaming Fixatives

Develop Uniform Testing Protocols

- lmpact
 - ASTM D2794? Resistance of Organic Coatings to the Effects of Rapid Deformation (Impact)
- Preparation of fixed contamination on porous coupon surfaces
 - ASTM E3190

ASTM Standard Practices

- E2924 Intumescent Coatings
- E3190 Preparation of Fixed Radiological/Surrogate Contamination on Porous Test Coupon Surfaces for Evaluation of Decontamination Techniques
- E3XXX Preparation of Loose Radiological/Surrogate Contamination on Non-porous Test Coupon Surfaces...

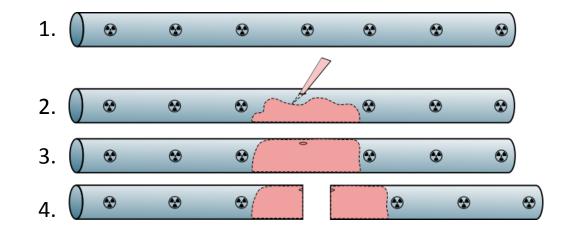
Advancing the research and academic mission of Florida International University.

Codify / Update of Regulations

- Huge gaps exist in current regulations that fail to account for fixatives
- Results from testing can be used to update outdated guidelines
 - DOE-HDBK-3010
- Provides incentives to utilize fixatives
 - Allows for credit in reducing the MAR

Ultimate End State

 A standards based fixative comparison matrix, using uniform stakeholderapproved testing protocols.


Fixative Coatings						
	PBS	FD	FD + PBS	ABC	ArmorSeal	FireGuard
Impact (ASTM D2794 – 320 in-lb)	X	\checkmark				
Elongation (ASTM D522)	\checkmark		\checkmark			
Cracking (ASTM D522)	\checkmark		\checkmark			
Thermal (NRC 10 CFR 71.73 - 1475°F for 30 mins.)	X	\checkmark	\checkmark	X		\checkmark
Water Immersion (NRC 10 CFR 71.73 - 3 ft. depth for 24 hours)		\checkmark				
Other Environmental Tests						

Advancing the research and academic mission of Florida International University.

Research Activity #3: Fire Retardant Plug for D&D of Nuclear Pipework

Concept of Operations:

- Place fire resistant plugs at strategic cutting points along pipework
 - Intumescent Foam
 - Fire Barrier Mortar
- Serves as a barrier to segregate / trap / immobilize contamination to mitigate potential release while cutting, packaging, and storing
- Operational deployment in 2022

Year 1:

Proof-of-Concept

Year 2:

Operational Cold

Year 3:

Operational Test in

Radioactive Environment/Hot

Demo

Fire Retardant Plug Roadmap to Operational Test and Evaluation / Hot Demo

 Component and/or breadboard validation in a relevant environment

 Proof of concept validated, and specific COTSbased technology identified - Completed 2019

- System or prototype demonstration in a relevant environment
- Testing will be focused on refining and validating key operational parameters to support approval by safety basis personnel for an operational test and evaluation Completed 2020
- System prototype demonstration in an operational environment

• Close collaboration with SRNL and/or INL will hopefully yield an opportunity to apply the foam system in an operational environment in 2022

Validation: Fire Resistance **Mechanical Limits** Curing Temperature Limits Extent of Contamination **Immobilization** NDE by Thermography Increase scale and introduce more challenging operationally relevant scenarios Collaborate with SRNL and leverage ASTM practices and principals to define the operational requirements

QUESTIONS

FLORIDA INTERNATIONAL UNIVERSITY

